On the convergence of Poisson integrals
HTML articles powered by AMS MathViewer
- by E. M. Stein and N. J. Weiss
- Trans. Amer. Math. Soc. 140 (1969), 35-54
- DOI: https://doi.org/10.1090/S0002-9947-1969-0241685-X
- PDF | Request permission
References
- [DS] N. Dunford and J. Schwartz, Linear operators, Vol. I, Interscience, New York, 1958.
[JMZ] B. Jessen, J. Marcinkiewicz and A. Zygmund, A note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
[N] O. Nikodym, Sur les ensembles accessibles, Fund. Math. 10 (1927), 116-168.
[S] E. M. Stein, Maximal functions and Fatou’s theorem, Summer course on Homogeneous Bounded Domains, Cremonese, 1967.
- E. M. Stein, Guido Weiss, and Mary Weiss, $H^{p}$ classes of holomorphic functions in tube domains, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1035–1039. MR 179386, DOI 10.1073/pnas.52.4.1035
- Norman J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc. 129 (1967), 283–307. MR 222330, DOI 10.1090/S0002-9947-1967-0222330-4
- Norman J. Weiss, Convergence of Poisson integrals on generalized upper half-planes, Trans. Amer. Math. Soc. 136 (1969), 109–123. MR 234014, DOI 10.1090/S0002-9947-1969-0234014-9
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
- A. Korányi and E. M. Stein, Fatou’s theorem for generalized halfplanes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 107–112. MR 279322
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 140 (1969), 35-54
- MSC: Primary 32.15
- DOI: https://doi.org/10.1090/S0002-9947-1969-0241685-X
- MathSciNet review: 0241685