$n$-aposyndetic continua and cutting theorems
HTML articles powered by AMS MathViewer
- by Eldon Jon Vought
- Trans. Amer. Math. Soc. 140 (1969), 127-135
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242128-2
- PDF | Request permission
References
- G. T. Whyburn and W. L. Ayres, On continuous curves in $n$ dimensions, Bull. Amer. Math. Soc. 34 (1928), no. 3, 349–360. MR 1561562, DOI 10.1090/S0002-9904-1928-04575-5
- Edward E. Grace, Cut sets in totally nonaposyndetic continua, Proc. Amer. Math. Soc. 9 (1958), 98–104. MR 95458, DOI 10.1090/S0002-9939-1958-0095458-X
- F. Burton Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545–553. MR 4771, DOI 10.2307/2371367
- F. Burton Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403–413. MR 25161, DOI 10.2307/2372339 R. L. Moore, A characterization of a continuous curve, Fund. Math. 7 (1925), 302-307. —, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., Vol. 13, Amer. Math. Soc., Providence, R. I., 1932. E. J. Vought, Stronger forms of aposyndetic continua, Doctoral Dissertation, University of California, Riverside, 1967.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 140 (1969), 127-135
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242128-2
- MathSciNet review: 0242128