
GEOMETRIC GROUPS AND WHITEHEAD TORSION

BY

E. H. CONNELL AND JOHN HOLLINGSWORTHt1)

The purpose of this paper is to define "geometric groups" and to relate them to

various problems in topology. This relation is exhibited through Conjectures I and

II. It will be shown that Conjecture I implies Conjecture II and that Conjecture II

implies the topological invariance of Whitehead torsion. Conjecture II is true for

2-complexes, and this implies that if K and N are finite connected complexes,

Lc=-K is a subcomplex with dim F ^2, and /: K-> N is a homeomorphism with

f\K—L p.w.l., then /is a simple homotopy equivalence. Another corollary is that

if AT is a 2-complex contained in a p.w.l. manifold Mn, Un is a compact p.w.l.

submanifold, 7C<= [/<= M, and U ^-deforms to K, then 7v<= U is a simple homotopy

equivalence and, thus, if zz^6, F is a regular neighborhood of K. Finally, for any

finitely presented group -n with Wh (tt)^O, 3 an /z-cobordism W with ■nx(W) = -n

which is not topologically trivial.

Geometric groups are related to other problems in topology and some of these

are mentioned without proof in the appendix. For example, Conjecture I implies

that compact ANRs of finite dimension have the homotopy type of finite complexes.

Conjecture II has a noncompact analogue and since the difficulties are local, there

is essentially nothing new here (Conjecture II is true for infinite 2-complexes). This

noncompact form of Conjecture II implies the following: If/: Rn -> Rn is a

homeomorphism (zz^5) such that fix Id : Rn x Rk -> Rn x Rk is stable, then / is

stable. The final note of the appendix implies the following: Suppose (atJ) is an

infinite matrix with integer entries, and that it and its inverse are band matrices,

i.e., bounded about the diagonal. Then (au) can be diagonalized by row operations.

This is a nongeometric analogue of Conjecture II for the infinite complex R1.

Notation, definitions, and conjectures. Although the results of this paper hold

for CW complexes, their use has been avoided whenever possible to simplify the

proofs. Unless otherwise stated, the word "complex" means "simplicial com-

plex". If K is a complex, K^Rn means that K is topologically embedded in Rn.

This is important because in Lemma 5, K and N are homeomorphic complexes

embedded in essentially the same manner. If K and N are combinatorially distinct,

they cannot each be simplicially embedded. In general, K will be embedded in Rn

simply because Rn is a pleasant metric space in which geometric construction may

be performed.
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Suppose X is any metric space. If A cficK then d(A) will be the diameter of A.

If x, y e X, then d(x, y) is the diameter of the set {x, y}, i.e., the distance from

x to y. If 8>0, V(A,B,8) is defined to be {xeB : d(A,x)^8}. If B= X and the

meaning is clear, this may be written V(A, 8). The interior of A, where A is con-

sidered as a subspace of B, is written Int (A, B). The complement of A in 5 is

written Cm (A, B) and the closure of A in B is written Cl (A, B). If the set B is

clear from context, these will be written Int (A), Cm (A), and Cl (A) resp. The

statement that A is a S-deformation retract of B means 3 a map «: Bx I-> B such

that /z(x,0) = x, /z(x, 1)g/1, and <p(*> T)]<8 for all x g B and «(x, /) = x for all

xe A, te I.

Definition of Geometric Group. Suppose X is any metric space. The state-

ment that G is a geometric group associated with X means that 3 a finite collection

{Pi}ï=i where each pK e X and that G is the free group generated by the symbols /z¡

(free group always means free abelian group). Even if the point p¡ is the same as the

point pj, they nevertheless represent distinct generators of G because, when ij=j,

they are different symbols. This is a technicality—the reader should think of the

points as being distinct. If r is an integer, l^r-ív, and gr e G, then gj>r, 1 f^ifív, is

the unique integer defined by the equation gr=gi.rPi+g2.rP2+ ■• • +gv,rPv If

5c X, then C(5') = the subgroup of G generated by {p¡ : pt e S}. The symbol "/>,"

is used in two distinct ways and the meaning will be clear from context. For ex-

ample, pi e G(S) means pt= lpt is an element of the group G; p{e S means pt is a

point of X. Note that G = G(X) and if S^X,G = G(S) ® G(Cm (S)). If none of the

points pi are in S, G(S) = 0 e G. If Su Sac X then G(SX) n G(S2) = G(SX n S2) and

G(SX) + G(S2) = G(SX u Sa). If A is a subset of G, the carrier of A is the subset of X

defined by Ca (A)={p¡ : 3a e A such that when a is expressed as a linear combina-

tion of the Pi, the coefficient ofp¡ is nonzero}. Thus /f<=(7(Ca (A)).

Definition of 8-basis. Suppose {a,}"= x is a basis for G (basis means free

abelian basis). If S>0, the statement that {a,} is a S-basis means

(1) rf[Ca(a,)]<8for./=l,2,...,i>.
(2) Any /z¡ e G is a linear combination of {a, : Ca(a,)<^ V(ph X, 8)}.

The elements a¡ determine a set of integers aii; by the equation aj = aXJpi+ ■ ■ ■

+avjpv. Thus a basis determines a nonsingular integral matrix (atJ). Conversely,

given a nonsingular matrix (au) of rank v, there is determined a basis {a,) by the

same formula above. The matrix (au) determines an isomorphism of G onto itself.

This automorphism is also written as (aM) and is determined by the formula

(au)Pt = at.

Suppose T is an automorphism on 6". The statement that T is S-blocked means

that 3 a finite collection Si, S2,..., Sr, of disjoint subsets of X with G=

G(Si U S3 U- • -U Sr), d(Sd < 8, and T(G(S/)) = G(St) for i= 1, 2,..., r. A matrix is

said to be S-blocked if the automorphism it determines is S-blocked. It should be

noted that the transformation determined by a matrix depends upon the ordering

of the set {/z¡}, i.e., if this set is reindexed, the same matrix will determine a differ-
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ent transformation on G which may no longer be 8-blocked. Therefore when a

matrix is said to be 8-blocked, it means with respect to some definite ordered

basis {/zj}. It is obvious that if F is S-blocked, then {Tip/)} forms a 8-basis. Thus the

concept of "S-blocked" is a strong special form of the concept of "8-basis". The

following proposition is appropriate at this stage.

Proposition 0. Suppose G is a geometric group associated with X and generated

by{Pi}Li.

(a) IfiT is an automorphism on G with Ca [F(/z,)]c V(p¡, X, 8) and Ca [F_1(/Zj)]

<= V(pi, X, 8), then each of {Tip/)} and{T~\p/)} is a i28)-basis for G.

(b) If {a/} is a 8-basis for G, then 3 a 8-basis {b/} obtained by relabeling the a{,

such that the automorphism T defined by Tip/) = b¡ has the properties Ca [Tipi)]

c V(pu X, 8), Ca [T-\Pi)]^ V(ph X, 8), and {F"1^)} is a (28)-basis for G.

Proof of (a); Suppose Ca [T(p/)] and Ca[T~1(pi)]c:V(pi,o). Then d[Ca T(p/)]

<28. WritePi = dxT(px) + d2T(p2)-\-\-dvT(pv), and thus T'\p/) = dxpx + d2p2 +

■ ■ ■ +dvPv. Since Ca [F"^)^ V(Pi, 8), d, + 0 => p, e V(Pi, 8) => T(Pj)cz V(Pi, 28).

Therefore p¡ is a linear combination of {T(p;) : Ca [F(/z;)]c V(pt, 28)} and this

shows that {T(p/)} is a (28)-basis. By symmetry, {T~1(pi)} is also a (2S)-basis.

Proof of (b). Suppose {at} is a 8-basis and, as always, let (atJ) be the matrix

determined by the automorphism (ai<])pt=at. Since (aw) is nonsingular, 3 a matrix

(blt¡) obtained from (au) by interchanging columns, such that the diagonal entries

ètji^0 for i= 1, 2,..., zz (this elementary fact is assumed). As always, let bteG

be defined by bt = (bi¡¡)pt = T(pt). (The set {bt} is simply a relabeling of the set {at}.)

Since pt e Ca (bt) and d[Ca (bt)] < 8, it follows that Ca [T(pt)] = Ca (¿z()c v(pt, 8).

Since {bt} is a S-basis, pt = dxbx + d2b2+ ■ ■ ■ +dvbv where c/¡/0 => Ca (¿z¡)c

V(pt, 8). T- \pt) = dxpx+'--+ dvPv where i/^O^^eCa (bt) <= V(pt, 8). This

shows Ca [T-1(pt)]<=: V(pt, 8). Finally, {F"1^)} is a (2S)-basis from part (a).

Definition of S-map. If G=G(X) is a geometric group and 77 is a free abelian

group, a S-map/: G -^ H is a homomorphism onto satisfying (1) and (2) below

(properties (3) and (4) follow from (2)).

(1) If S^X,fi[G(S)] nfi[G(Cm V[S, S])] = 0.

(2) If Sx and S2 are sets with X=Sxu S2 and Sx n S2 = 0, then for any g e G(SX)

and any nonzero integer n with f(ng) efi[G(S2)], 3geG[V(Sx, 8) n V(S2, 8)] with

f(g)=f(g\
(3) If Sx and S2 are two sets with ^=5"! u S2 and Sxn S2= 0, then

/[G^)] nfi[G(S2)} ̂ fi(G[V(Sx, S) n F(52, 8)]).

(4) If Se Z then 3 a subgroup G'cG such that G(S)cG'<=G[V(S, 8)] and

H/f(G') has no torsion.

Observation. Condition (2) implies conditions (3) and (4).

Proof. Suppose (2) is true. Condition (3) follows by setting n = 1. To show (4) is

true, let S2 = S^X, Sx = Cm (S2, X),rr:H-+ H/f[G(S2)] be the projection, and F
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be the torsion subgroup of H/fi[G(S2)]. Let A <= G be a finite set such that -nf(A) = T.

Since H=fi[G(Sx)] +f[G(S2)] and 7rf[G(S2)] = 0, A may be chosen so that A <= G(SX).

Now by (2), 3BcG[V(Sx, 8) n V(S2, 8)] with fi(B)=f(A). The proof is completed

by setting G' = the subgroup of G generated by G(S2)uB. Then G(52)cG'c

G[V(S2, 8)], ■nf(G') = T and ////(C) has no torsion.

The connection between S-bases and S-maps is as follows: If G = G(X) is a

geometric group, {a¡} is a S-basis of G, A is a subgroup of G generated by some

subset of {öj}, and S-=-X with /lc:G(.S), then the map tt: G(S)^G(S)/A is a

(2S)-map (see statements 1, 2, 3 of Theorem 2).

Conjecture In. If AT is a finite complex, dim Ä"a«, and £>0, 3S>0 such that:

If G is any geometric group associated with K, H is a free abelian group, and

/: G -> // is a S-map, then 3{g¡}[=1c:G such that

0) {/(g¡)K=i is a free abelian basis for //,

(2) d[Ca(gi)]<efori=l,2,...,r,

(3) If 5ci, then /[G(5)]c:the subgroup of H generated by {f(gi) : Ca (gi)

<= F(S, A, e)}.

Conjecture IIn. If AT is a finite complex, dim K^n, and £>0, 3S>0 such that:

If G is any geometric group associated with K, generated by {px}vi = x, and {i7j}"=1 is

any S-basis for G, then 3 a sequence (y°), (yl), ...,(yn + 1)ofvxv matrices satisfying

(i) Each (y) is £-blocked for z'=l, 2,..., «+1, and (y°) is obtained from the

identity matrix by interchanging columns.

(ii) (yn + 1)(yn)- ■ ■(y1) = (aij)(y°) where (au) is the matrix associated with the

basis {aj.

The connection between Conj. I and Conj. II is as follows: If G = G(K) is a

geometric group, {a¡} is a S-basis of G, A is a subgroup of G generated by some

subset of {a¡}, and S<= K with ^c:G(5)) then as mentioned previously, the map

77: G(S) -> G(S)/A is a (2S)-map. Assuming Conj. I, 3{g¡} such that {7r(g()} is a basis

for G(S)/A. Then {rr(g¡)} together with the basis for A forms a (2S + S^-basis for

G(S). Thus it is possible to "block off" the basis for G and it is this process which

allows the proof that Conj. In => Conj. IIB+1. Each of these conjectures becomes

nontrivial in a hurry—when «= 1 for example. However the following proposition

is trivial.

Proposition 1. Conjectures I0 and II0 are true.

Proof of Conj. I0. Suppose A" is a 0-complex, A^={xi, x2,..., xn}, and e>0.

Let S>0 such that d(xt, Xj)>8 whenever i=tj. Let G = G(K) be generated by

{pJLi and /: G -> H a S-map. Let G = GX © G2 ©■ ■ ■ ® Gn where G¡ is the sub-

group of G generated by {p¡ : p¡ = x¡} (remember that the pt may not be distinct).

Since/is a S-map, H=f(Gx) ©• • • ©/(Gn). Let C¡ be a finite subset of G¡ such that

/(Cj) is a basis for/(G¡). Then (JtSiSn Q is the desired subset of G. The proof of

Conj. II0 is equally trivial and is omitted.

Conjecture II implies the topological invariance of Whitehead torsion.    The
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purpose of this section is to prove Lemma 5 below. The five lemmas presented are

obvious and the proofs are elementary (but tedious) exercises in general topology.

The first lemma shows how a 8-basis arises from a geometric situation.

Lemma 1. Hypothesis. K<^R2k + 5 is a connected k-complex and Y^K is a

connected subcomplex. M^R2k + 5 is a CW complex containing Y as a subcomplex

and M n K= Y. (M, Y) contains cells only in dimensions k+l and k + 2: the

(k+ l)-cells are (k+ l)-spheres {Sx, S2,..., S„} attached to Y at points {px, p2,...,

pv}; the (k + 2)-cells {Dx, D2,..., Dv} are attached by maps fi: 8D¡-^-(Yu Sx

ui2U"-u Sv). Y is a 8-defiormation retract of M, d(St) < 8, and d(D¡) < S for

i= 1, 2,..., v. G is the geometric group associated with Y that is generated by the

symbols {/zji'_ x. G also has a basis {a¡}v= x determined as follows : Let y¡ be a generator

of Hk + x(S¡ u Y, Y)xZ and Aj be a generator of Hk + 2(D¡, dDj). Then the image of

A¡ under the map

CO* 8: Hk + 2(DS, 3D,) -> Hk + x(dD,) -> Hk + X(Y u Sx u S2 u- ■ • u Sv, Y)

is aXJyx + a2Jy2+ ■ ■ ■ +aVJyv.  Then a^G is defined by aj = aXtlpx + a2t,p2+ ■ ■ ■

+ avjpv.

Conclusion. The set {aj}%x is a (38)-basis for G.

Proof. Since d(Dj)<8<38, it follows immediately that d[Ca (ay)]<38. Since St

deforms to Y in V(pu M, 28), it follows that 5¡ deforms to Y in

Y u (Sx u S2 u • • • u Sv) u [D, : D, c V(Pi, M, 38)}.

Therefore p¡ e G is generated by a combination of {a; : Ca (a,-)<= V(Pi, Y, 38)}.

This completes the proof.

Suppose/: K-¡- N is a homeomorphism and M{ is its mapping cylinder. Then

Mf is homeomorphic to Kx I, K is a deformation retract of M¡, and this deforma-

tion, when projected onto N, is the identity. If h is a map approximating/ then K

is a deformation retract of Mh, and this deformation, when projected onto N,

approximates the identity. The next lemma is a relative version of that fact.

Lemma 2. Let N^Rn be a finite complex. Ife>0, 3S>0 such that whenever

(i) K is any finite complex and W is any finite subcomplex of some subdivision

ofiK,
(ii) f: K-^ N is a homeomorphism which is p.w.l. on W, and

(iii) h: K-> N is a p.w.l. map with h\ W=f\ W and

d(h(x),f(x)) < 8   fiorxeK,

then 3 a map 77: Mh x I —> Mh such that

(a) 77(z, 0) = z and H(z, 1) 6 K for all ze Mh and H(x, u) = x for all x e K<^Mh

and ue [0, 1],

(b) d[JTN(H[z, I])}<c for all ze Mh and ttn[(x, t), u] =f(x) = h(x) for xeW and

t, ue [0,1].
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(The mapping cylinder over W is just Wxl. Thus (x, t) above is in Mh.)

Proof. Suppose N<=Rn and e>0. Let 0<=Rn be an open set, N<=0, and r:0^- N

a retraction : Let S > 0 such that if x, y e N and d(x, y) < 8, and T is the straight line

interval joining x to y, then T^O and d[r(T)] <e/3. This number S will satisfy the

conclusion of the lemma. Let (K, IF), / and « be given satisfying (i), (ii), and (iii).

Since d(fi «)<S,/and « are e/3-homotopic relative to IF, i.e., 3g: Ax/->- Nxl

with

g(x,0) = (f(x),0),
g(x, l) = (h(x), 1),

d[?rN(g[x, /])] < e/3 and

7TX(g(x, t)) = t for x g K, t g [0, 1], and also

g(x, t) = (f(x), t) = (h(x), t) for x g IF, / g [0, 1].

Construct the mapping cylinder Mg = [(KxI) x / u9 Nxl] and identify M, with

(Ax 0) x / u /Vx0, and Mh with (Ax 1) x / u Nx 1. Now (Ix 0) u (0 x /) u (Ix 1)

is a deformation retract of Ix I. Any such deformation induces a map px: Mgxl

-> Mg which deforms Mg into

[(AxIx0) u NxI] u [(A~xOx/)uiVx/]u [(Ax7xl)uJVx/]

= (Ax/xO)u MfXj Nxl = X

with d[rrN(px(z, /))] < e/3 for all z g Mg. Here irN represents the natural projection

of Mg to N x I followed by its projection onto TV.

Now TV x / deforms to TV x 0 c Afr, Mf deforms to (A" x 0 x 0) <= (A" x / x 0) because

/is a homeomorphism, and KxIxO deforms to A"x 1 x0 which is the base of Mh.

These three deformations performed in sequence yield p2 : X x / -> X, a deformation

of X onto A" x / x 0 c Mh with rrN(z xl) = irN(z) for any zeX.

Define p: Mh x 1^- Mg by

p(z, t) = Px(a, 20 for 0 ^ t Ú \,

= p2(px(z,l),2t-l)   foriáíí 1,

and note that

p(z, 0) = z,       p(z, 1) g A"x 1 x 0 c Mh <= Mg,

d(rrN[p(z, I)]) < e/3   all z g Mk

and

7rN(x, t,u) = x     all (x, t, u) e Wx Ix I.

A retraction r: Mg-^ Mh may be defined as follows: For (x, t,u)e Kxlxl

r(x, t, u) = (x, 1, (l-t) + u)   when (I-t) + u ^ 1,

= (x, 1, 1) when (1-/) + m ̂  1.

For (y, t)eNxI, r(y, t) = (y, 1). Note that (x, 1, 1) is identified with (/(x), 1)

eNxI in  Mh<=Mg.  Then  r satisfies d(7rw(z), 7rif[z-(z)])<e/3  for zeMg.  Also
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rrN[r(z, 1, u)]=TTf,(x, t, u) = h(x)=f(x)   for   (x, t, u) e Wxlxl.   The   deformation

77: Mhxl'—► Mh desired in the conclusion of the lemma is given by H = rp.

Suppose K is a deformation retract of Q. It is a classical theorem of J. H. C.

Whitehead that 3M=>K such that (M, K) has cells in only two distinct dimensions,

M deforms to K, and the Whitehead torsion t(M, K) = t(Q, K). The next lemma

states that if Q S-deforms to K then M may be chosen to ¿-deform to K. This is

proved by working through Whitehead's proof and keeping track of distances.

Since the proof has no instructional value whatsoever, it is omitted.

Lemma 3. Suppose K<^ R2k*a is a finite connected k-complex, Y^ K is a connected

subcomplex, and e>0. Then 3 S > 0 such that if Q^ R2k + 5 is any (k + 1 )-complex with

Q n K= Y which 8-deforms to Y, then 3 a CW complex A7<= R2k + 5 containing Y as a

subcomplex, such that M n K= Y and

(a) M e-deforms to Y.

(b) (M, Y) has cells only in dimensions k+ 1 and k + 2 and the (k + l)-cells are

attached trivially.

(c) If a is a cell of(M, Y) then d(e) < e.

(d) The Whitehead torsion t(M u K, K) = r(Q u K, K).

Suppose AT is a finite connected complex and /.<=/( is a subcomplex. Let 8X>0

such that any set of diameter < 8X is contained in the star of some vertex. Suppose G

¡s a geometric group associated with L, generated by {/z¡}í'=i, and {at}Jml is a 8-basis

for G where 0 < S < 8X. Then the basis {a/} determines an element of the Whitehead

group Wh (ttj(F)) as follows: Join each pt to the base point by a path F¡. Join each

Ca (a,) to the base point by a path A¡—this is possible because Ca (a,)ethe star of

some vertex. For each pteCa(aj), [P¡~lA¡] will represent the element of irx(K)

determined by the loop Pi'1Aj.

The matrix (atj[Pi~1A ¡]) determines an element of Wh (ttx(K)). This element is

independent of the ordering of the set {p¡}, the ordering of the set {a¡}, the paths F¡

and the paths A,. It will be shown that if dim LSn and Conj. 11„ is true, then for 8

small enough, this element of Wh (ttx(K)) is 0.

Lemma 4. Suppose K is a finite connected complex and L is a subcomplex with

dim LSn. Then if Conjecture lln is true, 3S>0 such that if G is any geometric group

associated with L, and {a¡} is any 8-basis for G, then the matrix (aij[Pr1Aj]) rep-

resents the 0 element in Wh (irx(K)).

Proof. Suppose K is given. The proof is by induction on dim F. Suppose

dim F = 0. Then let S>0 be such that S is less than the minimum distance between

vertices of L. Then for any geometric group C7 and any 8-basis {íz¿}, each Ca(û;)

= some/Zj. Then the path A¡ can be chosen equal to the path F¡ and therefore the

matrix (ai.i[P^1Aj\) will have only integer entries and can be diagonalized by row

and column operations, and will represent the 0 element of Wh (ttx(K)).

Now suppose by induction that the lemma is true when the dimension of the

subcomplex is Sn. Suppose Conjecture lln + 1 is true and dim L=n+ 1. Let e>0 be
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such that the conclusion of the lemma holds for the subcomplex Ln, the «-skeleton

of L. This means that if G' is any geometric group associated with Ln, then any

£-basis for G' determines 0 in Wh (tt^A)).

Let Ox and 02 be open subsets of £ with £"<= ox and Cl (Ox)^ 02, and r:02-^Ln

a retraction with d(r(x), x)<e/8 for all a-g 02. Let £X>0 such that £j<£/16(« + 2),

V(L",L, 4(« + 2>1)c01, and V(Ox, L, 4(n + 2)ex)<=02.

By assumption, Conjecture IIn + i is true. Thus 38, 0<8<ex, such that the con-

clusion of Conjecture II is true for the complex L and the positive number ex. This

is to be the " 8" in the conclusion of this lemma. Let G be a geometric group

associated with L, generated by {/z¡},v=1 and containing a 8-basis {tf,}"=i. It must

be shown that the basis {a¡} determines the 0 element of Wh (tt1(A)).

The paths P¡ and A¡ are to be selected satisfying the following: If o is an («+1)-

simplex of £, p¡ e Int o, and Ca (a^^lnt °, then [Pr1Aj] is the unit of ^(A). This

is done by joining o to the base point by a path and using this single path to de-

termine all P¡ and A, above. If p¡ e Ln, then P¡ is chosen arbitrarily. If Ca (a,)

is not contained in the interior of some («+l)-simplex of £, then A¡ is chosen

arbitrarily.

Since Conjecture IIn+i is true and {at} is a S-basis, (ai>i) = (aTl + 2)(ce"+1)- ■ (a1)

where each (a¡) is ^-blocked. (Conjecture II gives this after (aitj) is altered by inter-

changing columns. Since interchanging columns does not effect the induced element

in Whitehead torsion, we suppose that (íZj,,) itself satisfies this equation.) Let

Sx,S2,...,Sr be disjoint subsets of £ such that G = G(SX u S2 u- • -u Sr),

(a1)[G(St)] = G(St), and d(St)<ex for t= I, 2,..., r. Define a new matrix (á1) by the

transformation formula: (a1)|G(5i) = (a1)|G(5'i) when St<=Cm (0X, L) and (ä^Gtft)

= the identity, otherwise. Define similarly (a2),.. .,(â" + 2), and let (â) = (â" + 2)

■(á»+1)- • (á1). Finally, let (ßi.,) = (ai,j[Pr1Aj])(äyi and (bi,j) = (au)(ä)-\

Note that for any (« + l)-simplex a of L, (au)[G(a n Cm (Ox))]^G(Int a). This

is true because V(L", L, 4(«+2)e1)<=01 and (ai>y) is the product of (n + 2) matrices,

each of which is ^-blocked. Therefore pt e Cm (Ox) implies (ai,j[Pf1Aj])pt =

(a¡,,)Pt = at, i.e., no fundamental group elements are involved. Since (a)"1 is the

identity on G(Ox), (a)-1 does not effect the matrix (au[Pi~1AJ]) whenever non-

trivial elements of the fundamental group appear.

The basic properties of (ßu) are :

(a) (ßu) represents the same element of Wh (^(A)) as does (aij[Pi'1Aj]).

(b) (ßi.j) arises from the basis {(bu¡)p^.

Property (a) follows from the fact that (a) ~1 has integer entries and is thus 0 in the

Whitehead group. Property (b) is obvious from the remarks above. The basic

properties of (bt,,) are :

(1) Whenever pte G[Cm(02)], (bu¡)pt=pt. (In this case ¿M=|SM=0 when

zV/and ¿i,t=/SM = l.)

(2) (bu)pt and (/>,,,)-V^WPz. L, 4(n + 2)ex)]<=G[V(Pt, L, e/4)].

(3) (Z>w)[G(02)] = G(02).
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Property (1) follows from (aiij)~1(pt) = (ä)~1(pt) for each pte G[Cm(02)]. Prop-

erty (2) follows from the fact that (¿>M) and (¿»¡y)-1 are the products of 2(n + 2)

matrices, each of which is ^-blocked, and the fact that ex <e/16(n + 2). Property (3)

follows from (1).

If row i and column y of a matrix are each composed of zeros except for a "one"

in the (z',y) place, then this row and column may be removed from the matrix

without changing its class in the Whitehead group. Thus if (ßu) is the matrix

determined by (y3(.,) restricted to G(02), then (ß[J) represents the same class in

Wh (nx(K)) as does (ft,,). Let (b'u) be the matrix determined by (bUj) restricted to

G(02). Then (b'i§i) still satisfies (2) and (3) above.

Let G' be the geometric group associated with F" and generated by the symbols

{r(pi) : pi e G(02)}. Now (b'tj), considered as a transformation of G' onto itself,

satisfies (b'u)[r(pt)] and (*;,,)_1Kft)]c V[r(Pt), Ln, e/2]. This follows from (2) and

the fact that d(r(x), x) < e/8 for x e 02. Therefore by Proposition 0, part (a),

(b'ltj) arises from an e-basis. By induction and the manner in which e was chosen, it

follows that (b'tti) determines the 0 element in Wh (ni(K)). It follows from (b) above

that (b'tj) determines the element (A',,), and the proof is complete.

The purpose of the four preceding lemmas is to prove Lemma 5 below. Lemma 5

is a relative version of the classical conjecture that homeomorphisms induce simple

homotopy equivalences. Here is the idea of the proof: Suppose /: K-> N is a

homeomorphism. Let h: K^-N be a p.w.l. map which approximates/ Using a

short mapping cylinder (instead of one of length "one") and Lemma 2, the

mapping cylinder Mh will deform to its base K through a small deformation. By

Lemma 3, it may be assumed that (Mh, K) has cells in only two dimensions. Using

Lemma 1, this determines a geometric group associated with K and a S-basis. It

follows from Lemma 4 and the assumption that Conjecture II is true, that this basis

induces the 0 element in Wh (ttx(K)).

Lemma 5. Suppose Conjecture II„ is true, K is a finite connected k-complex, andL

is a connected subcomplex of K with dim L S n. Then there exists a subcomplex X of

some subdivision ofiK, L^ Int (X, K), such that ifiN is any finite complex andfi: K-+N

is any homeomorphism with /|Cm (Int X, K) p.w.l, then f is a simple homotopy

equivalence.

Proof. Suppose TCis topologically embedded in R2k+1. By Lemma 4, there exists

ex > 0 such that G is any geometric group associated with L and {at} is any Ej-basis

for G, then the matrix (aiJ[PlrlAj]) represents the 0 element in Wh (ttx(K)). Let Kx

be a subdivision of K, T=St (Lx, Kx), and r: Y^-L be a retraction. Suppose the

subdivision Kx is fine enough that d(r(y), y)<ex/A for y e Y. Let K2 be the first

derived subdivision of Ki and X=St(L2, K2). This X will satisfy the conclusion

of the lemma.

By Lemma 3, there exists £2>0 such that if Q is any finite (k+ l)-complex which

£2-deforms to Y, then there exists a CW complex M, Y^ zV/c R2k *5 such that
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(a) M (e1/6)-deforms to F.

(b) (M, Y) has cells only in dimensions k+ 1 and k + 2.

(c) If a is a cell of (M, Y), then d(o) < ex/6.

(d) The Whitehead torsion r(M u A, K) = r(Q u A, A).

Let IF=Cm (Int X, A) and suppose A is a finite complex and /: A—>- N is a

homeomorphism such that/| IF is a p.w.l. map. It will be shown that/is a simple

homotopy equivalence. Let c>0 and define an embedding a: N —^/v2fc + 1x R by

a(x) = (f~1(x), c), i.e., N is embedded as a translate of A. For simplicity, we dis-

regard a and consider N already embedded in this manner. One important point

is that the homeomorphism

/: Ac R2k + 1xR^N <= R2k + 1xR

is now defined by f(x, 0) = (.v, c). For later purposes, we consider A and N<^R2k + 5.

Let h:K->N be a p.w.l. map approximating / such that h\rV=fi\rV. Using

Lemma 2 and choosing c small enough, it is a straightforward construction to

embed M„ in R2k + 5 such that

(1) The base of Mh is A.

(2) The "top" of Mh is N.

(3) M„ contains a subcomplex Q such that Q n A= F, A/h collapses to A u g,

and F u Q £2-deforms to F ((? will be mapping cylinder of h\ Y).

The number £2 was chosen so that there exists a CW complex M, Fc M<= R2k*5,

which (Ej/óJ-deforms to F and has cells only in dimensions k+\ and k + 2. By

Lemma I, this determines a geometric group associated with Fand an (ei/2)-basis.

When retracted onto L, this gives a geometric group associated with L and an

«i-basis. Using Conjecture IIn, the number ex was chosen so that this basis de-

termines the 0 element in Wh (ttx(K)). This completes the proof.

Conjecture lx and Conjecture II2 are true. The purpose of this section is to

prove Theorems 1 and 2 below.

Theorem 1. Conjecture Ix is true.

Proof. Suppose A is a 1-dimensional finite simplicial complex and £>0. Since

each component may be considered independently, suppose that A is connected.

Let Kx be a subdivision of A such that for each vertex a of Kx, d[St (a, Kx)]<e/2.

Let A2, A3, and A4 be the second, third, and fourth barycentric subdivisions of

Aj. Let ax, a2,..., ak be the vertices of Kx and ßx, ß2,..., ßm be the barycenters of

the 1-Simplexes of Kx. Define

Ui = St K A2), A, = St (ßj, A4),

Vi = St (Ui, A4), Bj = St (Aj, A4),

fF¡ = St(F¡;A4), Cj = St (Bj, A4),

Xi = St(Wi,Ki), Dj = St(Cj,Ki).



1969] GEOMETRIC GROUPS AND WHITEHEAD TORSION 171

If ßj e St (a(, Kx), then Xt n ^, = one point. If ßj $ St (af, Kx), then J¡n^.= 0.

Similar statements hold for Wi n Bh V¡ n Q, and t/¡ n 7F,.

Let 8 > 0 be such that if L is any subcomplex of Kt, then V(L, K, 8)

<=Open St(F, A"4). Suppose G = G(K) is a geometric group associated with K,

77 is a free abelian group, and/: G -> 77 is a S-map. The proof consists in showing

that this G, 77, and S-map/satisfy the conclusion of Conjecture lx.

Let Fi-J = {^eG[Int(IFi) n Int (£>,-)]: there exists an integer zz,¿0 with f(ng)

e/(G(F¡))}. The basic properties of Tu are:

(1) Tj=0 when W¡ n D,= 0. Thus for a fixedy, there are at most two integers i

with Fu^0.

(2) The set Fu is a subgroup of G[Int (Wt) n Int (F>;)].

(3) Tu=>G[vinhA(Df)].
(4) Any / e G[Int ( W/) n Int (7>,)] can be written uniquely as t = tx + t2 where

?! eG[f,ri Int (Dj)} and i2 e G[Int (W/) n Int (C,)]. If í e 4,, then tx and f2 e ru.

It follows from (3) that any tx e G[F¡ n Int (Dj)] belongs to Ti}. Since Tt<j is a

group, t2 e Tu.

Statement 1. Suppose V¡ n Cfj= 0, ge G(Int (C,)), and 3 an integer zz^O such

that f (rig) ef[G(Vt)+Tu). Then fig) ef(Tu).

Proof. Suppose the hypothesis. Then 3veG(Vt) and teTu3f(ng)=f(v + t).

Let t = tx + t2 where tx e G[F. n Int (F/)] and r2 e G[Int (IFO n Int (C;)]. Now

?! e G(Fj) and by property (4) above, t2 e TtJ. Thus v and t may be chosen so that

zz e G(F¡) and t e Tu n G[Int (Wt) n Int (C,)l Thus f(v) =f(ng-1) where zz e G(Vt)

and (zzg-OeGTInttQ^GÍCmtFO). Therefore by property (2) of a 8-map,

3m e G(Int (IF;) n Int (D,)) with f(u)=f(ng-t)=f(v). Since p e G(F¡), it follows

from the definition of Fu that ueTtJ. Now f(ng)=f(u + t) where z/ + ?eFu.

Again using the definition of Tly„ 3 an integer p^O 3f(p(u+t))= f(png)ef(Vi).

Since Ca(g)<=Cm (K¡), it follows from property (2) of a 8-map that 3«e

G(Int(B'1)r>Int(A)) with f(u)=f(g). Since f(pnü)=fi(png)ef(Vl), it follows

that he Tj. Thus/(g) ef(Tu) and Statement 1 is proved.

Statement 2. Let j be an integer, 1 SjSm, and a and b be the two integers

3 War\ Dj^ 0 and WbC\ F>;# 0. Then if ge G(C,) and 3 azz integer n^O sf(ng)

efi[TaJ + G(Cm [Int (D,)]) + Tbti\ then 3r0 e TaJ and tb e TbJ withfi(ta + tb)=f(g).

Proof. Letf(h) =f(ng) with h = hx + h2 + h3 and g=gx+g2+g3 where

gx e G(Int (Wa) n C,),   hx e TaJ,

g2 e G(B,), h2 e G(Cm [Int (DM

g3 e G(Int (Wb) n Q,    h3 e TbJ.

Now f(ng2)=f(h-ngx-ng3) where ng2eG(Bj) and (h-gnx-ng3) e G[Cm (£,)].

Thus by property (2) of a S-map, 3« e G[Cj n A'J, z; e G[C¡ n l^] with f(u + v)

=fi(g2).
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Furthermore f(h2)=f(ng-hx-h3) where «2 g G[Cm (Int D,)], (ng-hx—h3)

g G[Int Dj]. Again by property (2) of a 8-map, 3x e G(Va), y e G(Vb) with f(x+y)

=fi(h2).

Collecting the above results,/(«[g-1 + M+z>+g3])=/(/z1 + x+j + «3) or

fi(n[gx + u]-\hx + x]) = fi([y + h3]-n[v+g3])

where gx, u, hx, x e G(Xa) and y, h3, v, g3 e G(Xb). Since the distance from Xa to Xb

is greater than 8, it follows from property (1) of S-map that/[G(A"a)] nf[G(Xb}] = 0

and thus/(«[£,.+ W])=/(«1 + x) and fi(n[v+g3])=f(y+h3). Now [gx + u] e G(C,)

and [hx + x]eTaJ + G(Va) and it follows from Statement 1 that 3taeTaJ3f(ta)

=fi(gi + u). Similarly, 3tb e TbJ 3 f(tb)=f(v+g3). Therefore

f(ta+h)  =f(gl + U+V + g3)  =f(gi+g2 + g3) =f(g).

This proves Statement 2.

For any given i, Ifkifkk, define G,' by G,' = G(zjj) © [@(iJ)ea T¡,,] where a

={(i,j) : Ui n D,± 0}. Then G(Ul)cG(V^G'i^G(Wi) and G\ n [+^tG'i]=0.

Let (?'=©?_! G,'.

Statement 3. H/f(G') has no torsion.

Proof. Suppose geG and for some integer «>1, fi(ng)efi(G'). Show f(g)

efi(G'). Now g = h'+gx+g2+ ■■■+gm where «' g ©f=1 ^KJcG' and g, e G(Q).

Thus/[«(gi +g2+ • • • +gm)] ef(G') and it must be shown thatf(gx+g2+ ■ ■ ■ +gm)

ef(G'). Since f(ng) ef(G') and/(««') ef(G'), 3g' e G' with

f(ngù =f(g'-n(g2+g3+ ■ ■ ■ +gm)).

It now follows from Statement 2 that fi(gx) ef(G'). Similarly, f(g,) ef(G'), and

therefore f(gx+g2+ ■ ■ ■ +gm) e/(G').

Statement 4. Let -n : H -> H/f(G') be the projection. Then

m

H/f(G') = @Trf[G(Cj)].
i=l

Proof. It must be shown, for example, that Trf[G(Cx)] n ( + f=2 Trf[G(C,)]) = 0.

Suppose 7r/(c1)=7r/(c2 + c3+ ■ ■ • +cm) where c; g G(C,). This means 3g' g G' with

fi(cx)=f(c2+ ■ ■ ■ +cm+g'). Therefore by Statement 2 f(cx) ef(G') and 7r/(d) = 0.

This proves Statement 4.

Now fi(G'i) is a subgroup of the free abelian group H and thus f(G{) is free

abelian. Let £¡ be a finite subset of G¡ 3/(Pi) is a free abelian basis offi(G[). Accord-

ing to Statement 3, H/f(G') is a free abelian group and according to Statement 4,

H/f(G') = 0 7r/[G(Cy)]. Let £; be a finite subset of G(C¡) 3 rrfi(E^ is a free basis for

Tf[G(Cj)].

Statement 5. 77ze set f[(\J E,) u ((J £)] is a free basis for H satisfying the

conclusion of the theorem.
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Proof. The fact that it is a free basis follows from the exact sequence 0 ->/(G')

-> H-+H/f(G) -> 0 and the fact that/flj Ft) is a free basis for/(G') and W/(U E¡)

is a free basis for H/f(G').

If £e(U£/) or ^6(U^i) then ^[Ca(g)]<e because, for some vertex at,

Ca (g)c St K, A"j) and ¿[St («„ A",.)] < e/2 < e.

It remains to be shown that if S<=K, then/[G(<S)]cthe subgroup of H generated

by f(R) where R = {c e ((J E¡) u ((J £) : Ca (e)<= V(S, e)}. Now any g g G(5) can

be written as g=gx+g2+ ■ ■ ■ +gt where gv e [some G(C,)] n G(5) or g„ g [some

G(Int F¡)] n G(S)^ [some G¡] n G(5). It will be shown that each gv e the subgroup

of H generated by/(A) and the theorem will follow.

Suppose first that gv e G(Int F() n G(S). Now 5'n(IntFi)^0 (assuming

gv^0). Since ¿/[St (at, Kx)]<e/2, it follows that V(S,e)=>St(tt¡,Ki)^Ca(G't)

=>Ca(£i). Therefore F^R and the result follows because f(gv) e the subgroup

generated by/(£¡).

For the other case, suppose gv e G(C¡) n G(S). Then Trf(gv)=irf(nxex + ■ ■ ■ +nrer)

where each eu e Ej. Then f(gv — [nxex+ ■ ■ • +«rer]) efi(G'). Since (gv — [nxex+ ■ ■ ■

+nrer]) g G(Cj), it follows from Statement 2 that 3za e TaJ and tb e TbJ 3fi(ta + tb)

=fi(gv — [nxei+ ■ ■ ■ +nrer]). Now f(ta) and fi(tb) are in the subgroups generated

by f(Fa) and /(£,) respectively. Thus f(gv) is in the subgroup generated by

fi(Fa uf,u £;). Since Ca (Ea u £¡, u £y)c F(Ca (gv), e), this completes the proof

of Statement 5 and the theorem.

Theorem 2. Conjecture In => Conjecture IIn+1/or n=0, 1,2,_

Sketch of proof. Since the proof is hidden in a mass of details, a crude sketch of

the ideas involved is presented. Suppose Conj. In and Conj. II„ are true and show

Conj. IIn+i is true. Consider the simplest case possible—an («+ l)-simplex o with

d(o)<e. Suppose G(ct) is a geometric group with a 8-basis {a¡}^=1. Let Bdry ucAj

<=A2c:<7 where A2 retracts to Bdry a. Define A={at : a¡ e G(A2)}. The basic step

in the proof is showing that -n: G(A2) -> G(A2)/^ is a 8x-map (actually A2 must be

retracted onto Bdry o so that the inductive hypothesis will apply—however at this

point we simply think of A2 as being «-dimensional). Applying Conj. In to the

map n yields an extension of A to a 82-basis of G(A3). The transformation (c)

determined by this basis is the product of e-blocked matrices (Conj. IIn) and (c)

agrees with (at,¡) on G(AX). This means that if (ait,) = (d)(c), then (d) is the identity

on G(AX) and thus £-blocked. In the general case the complex will have (n+1)-

simplexes au o2,..., or. As before, (d) will be the identity on some neighborhood

Ax of the «-skeleton and will carry each G(o-j) into itself. Thus (d) will still be e-

blocked.

Proof. The proof is by induction on «. Suppose Conj. ln is true for some «^0.

Suppose by induction that Conj. II„ is true and show that Conj. IIn + 1 is true.

Suppose that A is a finite simplicial complex with dim A=«+ 1 and that £>0. Let

Kx be a subdivision of A with d[St (a, Kx)] < e for each vertex a of Kx. Let A" be the
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zz-skeleton of Kx, 0 an open set, KxcOcKand r: 0 -> K" a retraction. Let S2>0 be

such that Conj. II holds true for the complex Kx and the positive number e/2. Let

8X >0 be such that Conj. I holds true for the complex K? and the positive number

82/8. Let A1;A2 be closed sets with Kx<^lntAx,A^IntA2, and d(x,r(x))<

min (e/4, S2/16, 8^8) for all x e A2. Let S>0 be such that S<min (S2/4, 8x/4) and

V(KX, K, 8)clnt Aj, and F(A1, K, 8)<^lnt A2. It will be shown that this S satisfies

the conclusion of Conj. II for the complex K and the positive number e. Let

{ûi}"=i be any S-basis for G. Since the conclusion of Conj. II allows relabeling this

basis, it will be assumed that p, e Ca (a/) [see proof of Proposition 0, part (b)].

Let A^G be the subgroup generated by {a( : Ca (a/)<^A2} and n:G^ G/A be

the projection.

Statement 1. G(A2)/U has no torsion and is thus a free abelain group.

This follows from the fact that G/A has no torsion because A is generated by a

subset of a free basis.

Statement 2. If gx, g2 e G(A2) and F(Ca (gx), K, 8) n F(Ca (g2), K,8)=0,

then ■n(gx) = n(g2) => -n(gx)=0.

Proof.   Suppose Tr(gx) = -n(g2). Then gx=g2 + nxax-{-Ynvav where «t^0 =>

a,eA. Due to property (2) of the S-basis {a/}, gx=gx,xax+ ■ ■ ■ +gvAav where

giX¿0 => Ca (a¡)c F(Ca (gx), K, 8) and g2=gx,2ax+ ■ ■ ■ +gv,2av where gU2¥=0 =>

Ca (a¡)c F(Ca (g2), K, 8).   Since  the   a,  form  a  free   basis   and   gi,iax+■ • •

+^,iav=^i,2ÛiH-rgVt2av+nxax-l-r-«„a„   the   coefficients   must   be   the

same on each side of the equation. Since F(Ca (gx), K, 8) n F(Ca (g2), K,8)= 0,

gi,i=gt,2=> £¡,i=0. Nowa¡iM ^ni=0^ gitX=gU2 => giX=gi2 = 0. Therefore^

and g2 e A and Tr(gx) = 'n(g2) = 0.

Statement 3. Suppose Sx \J S2=A2 and Sx n S2= 0. If ge G(S2) and 3 azz

integer zz^O such that -n(ng) e -n[G(Sx)], then 3f e G[ V(SU A2, 8) O K(52,A2, 8)]

With 7T(g) = Tr(g).

Proof. Suppose heG(Sx) and TT(ng) = -n(h). Then ng = h + nxai+ ■ ■ ■ +nvav

where zz,#0 =- at e A. Also g=cxax + ■ • ■ +cvav where c¡^0 => Ca (a/)<= V(S2, K, 8)

and h=dxax+-Ydvav where d^O => Ca (a/)<= V(SX, K, 8). Write

ê = (it Ci0i)+ it Cj'öj)

where

a = {j : l S i S v, Ci ̂  0, and Ca (a/) c V(SX, K, 8)},

ß = {j:lSjuv, Cj # 0, and Ca (af) d: ViSx, K, 8)}.

From the equation

n(cxax-\-+cvav) = dxax-\-\-dvav + nxax+-\-nvav
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and the fact that Ca (a/)^ V(SX, A, 8) => d¡ = 0, it follows that for each jeß,

nCj = n¡. Thus for each jeß, «,#0 and a¡eA. Therefore 7r(+íeí c,aJ)=0 and

"<+>ea c,a,)=w(g). Now write (+iea cial)=g+g' where

Ca (g) c [V(SX, K, 8) n A2] = V(SX, A2, S),

Ca (g') c [F(St, A, 8) n Cm (A2)] c Cm (A2).

With this notation, ■"■(#') = 7r(g_<í)> i-e-> g'=g~g+a where í¡e1 But (g-g+a)

e G(A2) and therefore g'=0. This gives 7r(g) = w(g) where Ca (g)<= V(SX, A2, 8) and

Ca (£)<= F(Ca (g), K, 8)c F(52, A, 8). Since Ca (£)CA2, the second inclusion may

be written Ca (g)<= V(S2, A2, 8). This proves Statement 3.

Now summarizing the proof so far:

Statements 1, 2, 3. The function tt: G(A2) ->- G(à2)/A is a (28)-map.

Now consider the geometric group G' associated with the complex AJ and

generated by the symbols r(p¡) where pt e A2. Even though z-(/z¡) and rip,) may

represent the same point of A?, they are distinct free generators of G' whenever

i=&J Since Pi is a point of a complex and also an element of a group, the function r

can also be considered as a retraction and a group homomorphism r: G(A2) ->■ G'.

This   is   done   by   defining   r(nxpx-i-\-nvpv) = nxripx) + n2rip2)-\-^nvr(pv)

whenever nxpx+ ■ ■ ■ +nvpv e G(A2). Then r is an isomorphism, z- : G(A2)x;G' and

A' is defined by A' = riA). The projection map7r': G' -> G'/^' is given by jr*=rirr-1.

Statement F. G'/^' Aûtj no torsion and is thus a free abelian group.

This follows from Statement 1 and the fact that G(A2)IAzG'/A'.

Statement 2'. Ifgx, g2 e G' and F(Ca igx), K?, 8J2) n F[Ca ig2), A?, 8^2]= 0

then TT'igx)=7T'ig2) => w'(fx)=0.

Statement 3'. Suppose Sx u S^Aí1 íz«í/ Sj.nSa=0. If geG'(S2) and 3 an

integer n^O such that ir(ng) e n[G'(Si)], then 3g e G[V(SX, A?, 8X) n V(S2, A?, 8X)]

withir'(g) = rr'(g).

Statements 1', 2', 3'. The function it':G' -> G'/^' z'i a 8x-map.

The proofs of Statements 2' and 3' follow immediately from Statements 2 and 3

and the facts that d(x, r(x)) < 8x/% and 8 < 8^4. Now in order to simplify the proof

and keep the notation under control, we suppose that there is only one («+1)-

simplex o in Kx. The general case is no different except each («+ l)-simplex must be

handled independently.

Statement 4'. 3 u collection {d'x, d2,..., d's}^G' such that:

(a) {7r'(í/,')}¡ = i '* a free basis for G'/A'.

(b) ¿(Ca (d[))< S2/8 for i =1,2,..., s.

(c) If S<=Kï, then n'(G'(S))^íhe subgroup of H generated by

W):Ca(áí)c V(S, A?, 8a/8)}.



176 E. H. CONNELL AND JOHN HOLLINGSWORTH [June

The collection {d[, d2,..., d's} u {r(at) : ax e A} is a 82-basis for G'.

Proof. By assumption, Conjecture I is true for zz-dimensional complexes. The

number 8X was chosen so that the conclusion of Conj. I holds for the positive

number S2/8, the complex Kf, and Si-maps from geometric groups associated with

Kx. Statement 4' is the conclusion of Conj. I applied to the 8x-map -n': G' -> G'/A'.

The fact that the collection {d'x, d2,..., d's} u {r(at) : a¡ e A} is a S2-basis for G'

follows immediately from (b), (c), the fact that {a/} forms a (S2/4)-basis for G, and

the fact that d(r(x), x) < S2/16 for all x e A2.

Statement 5'. Given any ordering of {r(p/) : p¡ e G(A3)}, 3 an ordering of the

82-basis {d'x, d'2,..., d's} u {r(a/) : a,e A} such that the automorphism 7" which sends

the first basis onto the second, is the product of(n+l) (e/2)-blocked automorphisms:

r=rn+xrn. ■-rx.

Proof. The number 82 was chosen so that the conclusion of Conj. II holds for

the complex Kx and the positive number e/2. Statement 5' is simply the conclusion

of Conj. II.

Now define d¡ e G(A3) by di = r'1(d't). Since A generates G(AX) and {^(d/)}

generates G(A2)/A, the d, may be restricted to G(A2—Ax), i.e., assume dt e G(A2—Ax).

Let T=r~1T'r and Ti=r-1T'ir.

Statements 4, 5. Summary of the proof to this point. Given any ordering of

{Pi : Pi e G(A3)}, 3 an ordering of the basis {dx, d2,..., ds} U {a¡ : ate A} such that

the automorphism T: G(A2) -> G(A2) which sends the first basis to the second, is the

product of(n + l) e-blockedautomorphisms: T=Tn+xTn- ■ Tx.

Proof of Statements 4, 5. If £<= A? and ¿7(5) < e/2, then d[r~\S) n A2]<e,

because d(r(x), x) < e/4 for all x e A2. The F¡ are e-blocked because the T/ are

(e/2)-bIocked. Thus the proof follows from Statements 4', 5'.

Extend F and F¡ to all of G by defining F|G[Cm (A2)] = F,|G[Cm (A2)] = the

identity, and note that F¡ is still e-blocked. Let (c) be the matrix which represents F

under the natural ordering of {p/}ï=x. If at e G(A2), it is in the basis which deter-

mined F, i.e., 3/zr with (c)pr = at. Therefore, 3 a matrix (Y) obtained from the

identity by interchanging columns, such that (c)( Y)pt = at for each / with at e G(A2).

Let (d) be the unique matrix such that (aiiJ) = (d)(c)(Y).

Statement 6. (d)at = atfor all ate G(A2).

Proof. (aiJ)pt=at = (c)(Y)pt for all t with at e G(A2).

Statement 7. d(pt)=ptfor all pte G(AX).

Proof. This follows from Statement 6 and the fact that {a¡ : a, e G(A2)} generates

G(AX). This shows that the matrix (d) is e-blocked and since (c) is the product of

(zz +1) e-blocked matrices, and (úr(ií)(Y)~1 = (d)(c), the proof is complete.

Corollary 1. Suppose K is a finite connected complex and L is a connected

subcomplex with dim L S 2. Then 3 a subcomplex X of some subdivision of K,



1969] GEOMETRIC GROUPS AND WHITEHEAD TORSION 177

£clnt (X, A), such that if N is any complex and f: A-> N is any homeomorphism

withfi\Cm (Int [X, A], A) p.w.l., then fis a simple homotopy equivalence.

Proof. The proof is immediate from Lemma 5 and the fact that Conj. II2 is true.

(The hypothesis that L be connected was merely a convenience—Lemma 5 and

Corollary 1 are true without this restriction.)

Corollary 2. Suppose M is a p.w.l. n-manifiold and K^M is a connected

2-complex topologically embedded in M. Then 38 >0 such that if U is any complex

topologically embedded in M, A<= {/<= M, A is a subcomplex of U, and U 8-deforms

to K, then A"c U is a simple homotopy equivalence. If in addition A and U are sub-

complexes of M, U is an n-manifiold with boundary, A<= Int (U), and « à 6, then U is a

regular neighborhood of A.

Proof. It follows from Lemmas 3 and 4 that 38 > 0 such that if U 8-deforms to A,

then A<= U is a simple homotopy equivalence. Suppose A and U are subcomplexes

of M, Uis an «-manifold with boundary, A<=Int (U), and «^6. Let Ux be a regular

neighborhood of K, Ux<^IntU. Then U— Int(Ux) is an //-cobordism. Since

K<^UX and A<= U are simple homotopy equivalences, and TTX(Ux)XTrx(dUx), it

follows that dUx<= U—Int (Ux) is a simple homotopy equivalence. Therefore

U-Int(Ux) is p.w.l. homeomorphic to dUxxI([lO], [11], [12]). Thus U is a regular

neighborhood of A.

Definition. If Ais a finite connected complex, an abstract regular neighborhood

X" of A" is a compact p.w.l. manifold containing A" as a subcomplex such that X

collapses to K.

Corollary 3. Suppose A is a finite, connected 2-complex and Xn is an abstract

regular neighborhood ofK, «3:6, and Y is a p.w.l. manifold andf: X -*> Fisahomeo-

morphism onto. Then f is a simple homotopy equivalence.

Proof. Since « >: 6, / is isotopic (mod 8X) to a homeomorphism which, when

restricted to A is a p.w.l. embedding ([18] or [19]). Thus suppose / itself has this

property. Now r(f) = rii) where z':/(A) ->- Fis the inclusion. Let S>0 satisfy the

conclusion of Corollary 2 for the complex/(A). Since Fis homeomorphic to X, 3

a topological embedding «: F^ F such that

(1) « is topologically isotopic to Id: F-> F,

(2)«|/(A) = Id:/(A)->/(A-),and

(3) /(A) is a S-deformation retract of «(F). Now by Corollary 2,j:f(K) -* «(F)

= U is a simple homotopy equivalence. Since t(/) = t(i) = t(j) = 0, this completes

the proof.

Farrell and Hsiang have constructed /z-cobordisms which are not topologically

trivial [20]. It follows from the next corollary, that if -n is a finitely presented group

and Wh (tt)^0, then 3 a p.w.l. «-cobordism IF with ttxÍW) = tt and such that W is

not topologically trivial. This result has also been obtained by A. Casson.
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Corollary 4. Suppose K is a finite connected 2-complex and X" is an abstract

regular neighborhood of K, zz^6. IfW is a p.w.l. h-cobordism, one of whose boundary

components is ciX, then W is homeomorphic to dXx! iff r(W, dX) = 0.

Proof. If t(W, dX) = 0, then W is p.w.l. homeomorphic to dXxI by p.w.l.

Smale theory. Suppose W is homeomorphic to dXxI. If Y= W\J X identified by

c)X, then 3 a homeomorphism/: X-> Y which is homotopic to Id: X^> X. By

Corollary 3, t(/) = 0. Since t(W, dX) = r(Y, X) = r(f) = 0, the proof is complete.

Appendix. Geometric groups are related to several problems in topology, and

some of these are mentioned here. No proofs are presented but brief sketches of the

ideas are included.

I. Conjecture I and Wall's Obstruction.

Lemma 6. Suppose X^Rn is a compact connected set which is a retract of some

open subset of Rn, and oO. Then 3 a finite (n+ \)-complex K X<=K<=R2n + 3, such

that Kn e-defiorms to X in Kn + 1=K, every element of Hn + X(K, X)z¿Hn + x(K) is

spherical, and Hn + X(K) is generated by {/*[77n + 1(Sn + 1)] :f:Sn + 1-+K satisfies

d[fi(Sn + 1)]<e}.

This is proved by brute force construction and induction. Suppose for example,

that K is given as above, and it is desired to construct L = Ln + 2 such that Fn+1

small-deforms to X in L. L is formed by attaching small (zz-f 2)-cells to K. It must be

shown that irn + x(K, X) is locally finitely generated and that (zz+ 2)-cells may be

attached in a manner that will allow K to deform to X by a slight movement (this is

a difficult geometric construction).

Theorem 3. Suppose X<^ Rn is a compact connected set which is a retract of some

open subset of R". Then Conj. I2n + 3 implies that X has the homotopy type of a finite

complex.

Let A" be as in Lemma 6, X<=K<= R2n + 3, K be the universal covering space of K,

and ■n = Trx(K) = TTX(X). Hn + X(K) is a projective ^-module and its element in the

projective class group of Z(tt) is Wall's obstruction [9]. If Hn + X(K) is a free n-

module, the free generators will allow (n + 2)-cells to be attached to A-to determine

L such that X^L is a homotopy equivalence. In the covering space this corresponds

to killing Hn + X(K) without creating any (n + 2)-cycles. Suppose Conj. I2n + 3 is true

and let IF be a (2zz + 3)-cell with A^lnt (W). Then A" can be constructed to lie in W.

We consider geometric groups associated with W, not with A. G = G(W) will be

generated by {p¡} constructed as follows: Let {P/} be a collection of small cycles,

Pt eZn + x(K), which generate 7/n + 1(A), and let p¡ e A<= IF be a point of the carrier

of F¡. Let H=Hn + x(K). Then/: G —> 77defined by/(/Zj) = the homology class of F¡

is a S-map. The conclusion of Conj. I gives a free basis for Hn + X(K) and each basis

element is carried by a small cycle. Since these cycles are small, they lift homeo-

morphically to the covering space where -n acts freely on them.
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Summary. Lemma 6 gives a A where //n + 1(A) is generated by small cycles.

Conj. I is used to determine a free basis composed of small cycles. This free basis

lifts to a free w-basis of Hn + X(K).

IL Noncompact Smale Theory.

Conjecture A. Suppose M is a p.w.l. «-manifold (« ̂  6) without boundary

topologically embedded as a closed subset of R2n+a. Then if e(x): /?2n+3 -> (0, 1)

is continuous, 3 a continuous 8(x) : R2n + a -> (0, 1 ) such that if C is a p.w.l. manifold

topologically embedded as a closed subset of A2""1"3, dC=two components M and

Mx, and C 8-deforms to M and to M1; then 3 a p.w.l. homeomorphism h: Mx /->C

with h(x, 0) = x and i/[zz(x, /)]<s(x) for xe M.

First consider the special case where M is compact. This conjecture states that

the //-cobordism is trivial whether M is simply-connected or not; i.e., it states that

M<= C is a simple homotopy equivalence. This is implied by Conj. IIn and Lemmas

3 and 4. Conj. A also says that C is trivial in a controlled manner, i.e., d[h(x, /)] < e.

This requires reproving Smale theory using S-blocked matrices. The column

operations necessary to diagonalize the matrix can be done locally and handles

can be cancelled in a controlled manner. Thus Conj. IIE implies Conj. A for M

compact. For noncompact M, Conj. II must be generalized to consider infinitely

generated geometric groups associated with infinite complexes. Since Conj. II is

local in nature, this is only a slight generalization. Summary: A generalized

Conj. IIn implies Conj. A.

III. Stable Homeomorphisms.

Conjecture B. Suppose /: Rn -> Rn («3:5) is a homeomorphism and 3 an

integer k such that fix I: R"xRk-+ R"x Rk is stable [15]. Then / is stable.

It suffices to consider the case k=I. A homeomorphism is stable iff it can be

approximated by a p.w.l. homeomorphism [16]. Suppose g: Rn x R -> R" x R is a

p.w.l. homeomorphism approximating fix I. Move g slightly so that g(R" x 0)

nü"xO=0. Then R" x 0 and giR" x 0) bound an //-cobordism and using Conj. A,

/may be approximated by a p.w.l. homeomorphism. Thus Conj. A implies Conj. B.

IV. DlAGONALIZING INFINITE MATRICES.

Theorem 4. If M is a positive integer, 3 a positive integer N such that: Ifaifj and

btJ are integers for — ooáz, 7'áoo, with aM = /3i>;=0 for \i—j\> M and (alt¡)(bi,j)

= the identity matrix, then 3 matrices icifi) and (dlt ,) and an integer k, —M^k^M,

such that

(1) (Ci,j)(di,j) = (au),

(2) cu = 0   when 3« with 2nN g i ^ 2(n+l)N and

(j < 2nN+k orj > 2(n+l)N+k),

(3) du = 0   when 3« with (2n-l)N ^ i -¿ 2(n+l)N and

(j < 2(n-l)Norj > (2n+I)N).
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This is analogous to Conj. IIX for the noncompact complex K= Reals. The

proofs of Conj. IL and Theorem 3 are similar, except Theorem 3 is easier. Here is

the idea for constructing (ctJ). Divide (aitj) into finite blocks .. .A_2, A_x, A0,

Ax,..., throw away A{ for i odd and replace it by Bt where 7?¡ is an identity matrix

slightly smaller than A{. Now the columns of A2i are part of a basis for an infinitely

generated free abelian group and, of course, so are the columns of 7?2i + 1. The

approach is to take their union and extend it to a complete basis—this corresponds

to filling in the gaps between A2i and B2i + X. Use the fact that the inverse matrix is

bounded about the diagonal to show this can be done. This gives (cu), and (<7M) is

defined by (í/í,;) = (cí>,)"1('7í,í)- The blocks y42i in (ctJ) will cause (dtj) to have blocks

of the identity and thus automatically be broken into finite nonsingular blocks.
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