Isomorphism and approximation of general state Markov processes
HTML articles powered by AMS MathViewer
- by Richard Isaac
- Trans. Amer. Math. Soc. 140 (1969), 367-380
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242256-1
- PDF | Request permission
References
- David Blackwell, Idempotent Markoff chains, Ann. of Math. (2) 43 (1942), 560–567. MR 6632, DOI 10.2307/1968811
- R. V. Chacon, Identification of the limit of operator averages, J. Math. Mech. 11 (1962), 961–968. MR 0145352
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- William Feller, An introduction to probability theory and its applications. Vol. I, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. 2nd ed. MR 0088081
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332–350. MR 6617, DOI 10.2307/1968872
- T. E. Harris, On chains of infinite order, Pacific J. Math. 5 (1955), 707–724. MR 75482, DOI 10.2140/pjm.1955.5.707
- T. E. Harris and Herbert Robbins, Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 860–864. MR 56873, DOI 10.1073/pnas.39.8.860
- Felix Hausdorff, Set theory, Chelsea Publishing Co., New York, 1957. Translated by John R. Aumann, et al. MR 0086020
- Richard Isaac, On regular functions for certain Markov processes, Proc. Amer. Math. Soc. 17 (1966), 1308–1313. MR 205330, DOI 10.1090/S0002-9939-1966-0205330-4
- T. E. Harris, The existence of stationary measures for certain Markov processes, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 113–124. MR 0084889
- N. C. Jain, Some limit theorems for a general Markov process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 206–223. MR 216580, DOI 10.1007/BF00531804
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- John Lamperti, Probability. A survey of the mathematical theory, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR 0206996 Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theor. Probability Appl. 1 (1956), 157-214.
- Kai Lai Chung, Markov chains with stationary transition probabilities, Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0116388, DOI 10.1007/978-3-642-49686-8
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 140 (1969), 367-380
- MSC: Primary 60.60
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242256-1
- MathSciNet review: 0242256