Recursive theory and Dedekind cuts
HTML articles powered by AMS MathViewer
- by Robert I. Soare
- Trans. Amer. Math. Soc. 140 (1969), 271-294
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242667-4
- PDF | Request permission
References
- J. C. E. Dekker, Productive sets, Trans. Amer. Math. Soc. 78 (1955), 129–149. MR 67049, DOI 10.1090/S0002-9947-1955-0067049-X
- J. C. E. Dekker and J. Myhill, Retraceable sets, Canadian J. Math. 10 (1958), 357–373. MR 99292, DOI 10.4153/CJM-1958-035-x
- Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of integers, Z. Math. Logik Grundlagen Math. 5 (1959), 117–125. MR 112831, DOI 10.1002/malq.19590050703 C. G. Jockusch, Jr., Reducibilities in recursive function theory, Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, 1966.
- Carl G. Jockusch Jr., Semirecursive sets and positive reducibility, Trans. Amer. Math. Soc. 131 (1968), 420–436. MR 220595, DOI 10.1090/S0002-9947-1968-0220595-7
- Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- A. H. Lachlan, Some notions of reducibility and productiveness, Z. Math. Logik Grundlagen Math. 11 (1965), 17–44. MR 172795, DOI 10.1002/malq.19650110104 D. Lacombe, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réeles. I, II, III, C. R. Acad. Sci. Paris 240 (1955), 2478-2480, ibid., C. R. Acad. Sci. Paris 241 (1955), 13-14; 151-153. —, Les ensembles récursivement ouverts ou fermés et leur applications à l’analyse récursive, C. R. Acad. Sci. Paris 245 (1957), 1040-1043.
- Donald A. Martin, Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310. MR 224469, DOI 10.1002/malq.19660120125
- A. Mostowski, On computable sequences, Fund. Math. 44 (1957), 37–51. MR 91242, DOI 10.4064/fm-44-1-37-51
- John Myhill, Creative sets, Z. Math. Logik Grundlagen Math. 1 (1955), 97–108. MR 71379, DOI 10.1002/malq.19550010205
- John Myhill, Recursive digraphs, splinters and cylinders, Math. Ann. 138 (1959), 211–218. MR 111684, DOI 10.1007/BF01342904
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
- H. G. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784–791. MR 63328, DOI 10.1090/S0002-9939-1954-0063328-5
- H. G. Rice, Recursive and recursively enumerable orders, Trans. Amer. Math. Soc. 83 (1956), 277–300. MR 83454, DOI 10.1090/S0002-9947-1956-0083454-0
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
- Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J., 1963. MR 0186554
- J. R. Shoenfield, Quasicreative sets, Proc. Amer. Math. Soc. 8 (1957), 964–967. MR 89808, DOI 10.1090/S0002-9939-1957-0089808-7 R. I. Soare, Nonrecursive real numbers, Notices Amer. Math. Soc. 14 (1967), 144 and 252. —, Cohesive sets and recursively enumerable Dedekind cuts, (to appear).
- C. E. M. Yates, Recursively enumerable sets and retracing functions, Z. Math. Logik Grundlagen Math. 8 (1962), 331–345. MR 146072, DOI 10.1002/malq.19620080313
- C. E. M. Yates, Three theorems on the degrees of recursively enumerable sets, Duke Math. J. 32 (1965), 461–468. MR 180486
- Paul R. Young, A note on pseudo-creative sets and cylinders, Pacific J. Math. 14 (1964), 749–753. MR 162714, DOI 10.2140/pjm.1964.14.749
- Paul R. Young, On semi-cylinders, splinters, and bounded-truth-table reducibility, Trans. Amer. Math. Soc. 115 (1965), 329–339. MR 209151, DOI 10.1090/S0002-9947-1965-0209151-1
- Paul R. Young, On pseudo-creative sets, splinters, and bounded-truth-table reducibility, Z. Math. Logik Grundlagen Math. 13 (1967), 25–31. MR 202595, DOI 10.1002/malq.19670130106
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 140 (1969), 271-294
- MSC: Primary 02.70
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242667-4
- MathSciNet review: 0242667