Compactness of the Neumann-Poincaré operator
HTML articles powered by AMS MathViewer
- by E. J. Specht and H. T. Jones
- Trans. Amer. Math. Soc. 140 (1969), 353-366
- DOI: https://doi.org/10.1090/S0002-9947-1969-0402080-3
- PDF | Request permission
References
- T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Uppsala Dissertation, 1917.
- O. D. Kellogg, Potential functions on the boundary of their regions of definition, Trans. Amer. Math. Soc. 9 (1908), no. 1, 39–50. MR 1500801, DOI 10.1090/S0002-9947-1908-1500801-0
- O. D. Kellogg, Harmonic functions and Green’s integral, Trans. Amer. Math. Soc. 13 (1912), no. 1, 109–132. MR 1500909, DOI 10.1090/S0002-9947-1912-1500909-0
- N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
- Wolfgang J. Sternberg and Turner L. Smith, The Theory of Potential and Spherical Harmonics, Mathematical Expositions, No. 3, University of Toronto Press, Toronto, Ont., 1944. MR 0011513, DOI 10.3138/9781487574178
- S. E. Warschawski, On the solution of the Lichtenstein-Gershgorin integral equation in conformal mapping. I. Theory, Experiments in the computation of conformal maps, National Bureau of Standards Applied Mathematics Series, No. 42, U.S. Government Printing Office, Washington, D.C., 1955, pp. 7–29. MR 0074121 A. C. Zaanen, Linear analysis, Noordhoff, Groningen, 1956.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 140 (1969), 353-366
- MSC: Primary 31A15; Secondary 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1969-0402080-3
- MathSciNet review: 0402080