Infinite primes and unique factorization in a principal right ideal domain
HTML articles powered by AMS MathViewer
- by Raymond A. Beauregard
- Trans. Amer. Math. Soc. 141 (1969), 245-253
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242879-X
- PDF | Request permission
References
- N. Bourbaki, Éléments de mathématique. Algèbre commutative, Chapitre 2, Hermann, Paris, 1961.
- P. M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963), 313–331. MR 155851, DOI 10.1090/S0002-9947-1963-0155851-X
- P. M. Cohn, Torsion modules over free ideal rings, Proc. London Math. Soc. (3) 17 (1967), 577–599. MR 222112, DOI 10.1112/plms/s3-17.4.577
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601, DOI 10.1090/surv/002 A. V. Jategaonkar, A counter example in ring theory and homological algebra (to appear).
- R. E. Johnson, Unique factorization in a principal right ideal domain, Proc. Amer. Math. Soc. 16 (1965), 526–528. MR 175927, DOI 10.1090/S0002-9939-1965-0175927-8
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480–508. MR 1503119, DOI 10.2307/1968173
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 141 (1969), 245-253
- MSC: Primary 16.15
- DOI: https://doi.org/10.1090/S0002-9947-1969-0242879-X
- MathSciNet review: 0242879