Free surfaces in $S^{3}$
HTML articles powered by AMS MathViewer
- by John Hempel
- Trans. Amer. Math. Soc. 141 (1969), 263-270
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243534-2
- PDF | Request permission
References
- J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U. S. A. 10 (1924), 8-10.
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105β139. MR 107229, DOI 10.4064/fm-47-1-105-139
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145β158. MR 61377, DOI 10.2307/1969836
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37β65. MR 100841, DOI 10.2307/1970092
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465β483. MR 87090
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435β446. MR 130679, DOI 10.2140/pjm.1961.11.435
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33β45. MR 160194
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80β97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2
- John Hempel, A surface in $S^{3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273β287. MR 160195, DOI 10.1090/S0002-9947-1964-0160195-7 Norman Hosay, The sum of a real cube and a crumpled cube is ${S^3}$, Abstract 607-17, Notices Amer. Math. Soc. 10 (1963), 668.
- Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534β549. MR 178460, DOI 10.1090/S0002-9947-1965-0178460-7
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159β170. MR 61822, DOI 10.2307/1969837
- C. D. Papakyriakopoulos, On Dehnβs lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1β26. MR 90053, DOI 10.2307/1970113
- C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281β299. MR 87944, DOI 10.1112/plms/s3-7.1.281 R. L. Wilder, Concerning a problem of K. Borsuk, Fund. Math. 21 (1933), 156-167. β, On free subsets of ${E_n}$, Fund. Math. 25 (1935), 200-208. β, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., Vol. 32, Amer. Math. Soc., Providence, R. I., 1949.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 141 (1969), 263-270
- MSC: Primary 57.05
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243534-2
- MathSciNet review: 0243534