Properties of $H^{p}$ $(0<p<1)$ and its continuing Banach space
HTML articles powered by AMS MathViewer
- by P. L. Duren and A. L. Shields
- Trans. Amer. Math. Soc. 141 (1969), 255-262
- DOI: https://doi.org/10.1090/S0002-9947-1969-0244751-8
- PDF | Request permission
References
- P. L. Duren and A. L. Shields, Coefficient multipliers of ${H^p}$ and ${B^p}$ spaces (to appear).
- P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247–254. MR 199359, DOI 10.1215/S0012-7094-66-03328-X
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32–60. MR 259579 T. M. Flett, On the rate of growth of mean values of regular and harmonic functions (to appear).
- G. H. Hardy and J. E. Littlewood, Some new properties of fourier constants, Math. Ann. 97 (1927), no. 1, 159–209. MR 1512359, DOI 10.1007/BF01447865
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596 —, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423. —, Notes on the theory of series (XX): Generalizations of a theorem of Paley, Quart. J. Math. 8 (1937), 161-171.
- J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121
- R. E. A. C. Paley, On the lacunary coefficients of power series, Ann. of Math. (2) 34 (1933), no. 3, 615–616. MR 1503129, DOI 10.2307/1968183
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 141 (1969), 255-262
- MSC: Primary 46.30; Secondary 30.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0244751-8
- MathSciNet review: 0244751