Homeomorphic continuous curves in $2$-space are isotopic in $3$-space.
HTML articles powered by AMS MathViewer
- by W. K. Mason
- Trans. Amer. Math. Soc. 142 (1969), 269-290
- DOI: https://doi.org/10.1090/S0002-9947-1969-0246276-2
- PDF | Request permission
References
- V. W. Adkisson and Saunders MacLane, Extending maps of plane Peano continua, Duke Math. J. 6 (1940), 216–228. MR 1345, DOI 10.1215/S0012-7094-40-00616-0
- R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491–511. MR 164329
- Schieffelin Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. (2) 35 (1934), no. 4, 809–835. MR 1503198, DOI 10.2307/1968496
- Harry Merrill Gehman, On extending a continuous $(1\text {-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc. 28 (1926), no. 2, 252–265. MR 1501343, DOI 10.1090/S0002-9947-1926-1501343-X
- J. M. Kister, Questions on isotopies in manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 229–230. MR 0140106
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- W. K. Mason, Homeomorphic continuous curves in $2$-space are isotopic in $3$-space, Trans. Amer. Math. Soc. 142 (1969), 269–290. MR 246276, DOI 10.1090/S0002-9947-1969-0246276-2
- Robert L. Moore, Concerning continuous curves in the plane, Math. Z. 15 (1922), no. 1, 254–260. MR 1544571, DOI 10.1007/BF01494397 —, Concerning the common boundary of two domains, Fund. Math. 6 (1924), 212.
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028 R. L. Wilder, Concerning continuous curves, Fund. Math. 7 (1925), 340-377. Summary of lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, (1955, revised 1958); p. 57, Question 8.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 142 (1969), 269-290
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1969-0246276-2
- MathSciNet review: 0246276