Manifolds in which the Poincaré conjecture is true
HTML articles powered by AMS MathViewer
- by Jonathan L. Gross
- Trans. Amer. Math. Soc. 142 (1969), 177-189
- DOI: https://doi.org/10.1090/S0002-9947-1969-0246302-0
- PDF | Request permission
References
- E. M. Brown, Unknotting in $M^{2}\times I$, Trans. Amer. Math. Soc. 123 (1966), 480–505. MR 198482, DOI 10.1090/S0002-9947-1966-0198482-0
- Jonathan L. Gross, A unique decomposition theorem for $3$-manifolds with connected boundary, Trans. Amer. Math. Soc. 142 (1969), 191–199. MR 246303, DOI 10.1090/S0002-9947-1969-0246303-2
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29–53, 129–152. MR 58204, DOI 10.1112/plms/s3-3.1.29
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161, DOI 10.1017/CBO9780511569289
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800
- Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, DOI 10.2307/1969769
- Andrew H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503–528. MR 125588, DOI 10.4153/CJM-1960-045-7 J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-327. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Études Sci. Publ. Math., 1963.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 142 (1969), 177-189
- MSC: Primary 57.01
- DOI: https://doi.org/10.1090/S0002-9947-1969-0246302-0
- MathSciNet review: 0246302