FACTORS OF INFINITE-DIMENSIONAL MANIFOLDS

BY R. D. ANDERSON AND R. SCHORI(1)

1. **Introduction.** Let J^{∞} denote the Hilbert cube, i.e. the countable infinite product of closed intervals, and let s denote the countable infinite product of open intervals (or lines as convenient). Specifically, let $J^{\infty} = \prod_{i>0} J_i$ and let $s = \prod_{i>0} J_i^0$ where for each i>0, J_i is the closed interval [-1, 1] and J_i^0 is the open interval (-1, 1). In [1] it was shown that s is homeomorphic to Hilbert space, l_2 , and thus, on the basis of results in [6] and [7], to all separable infinite-dimensional Fréchet spaces (and therefore, of course, to all separable infinite-dimensional Banach spaces).

A Fréchet manifold (or F-manifold) is a separable metric space with an open cover of sets each homeomorphic to an open subset of s. Thus all separable metric Banach manifolds modeled on separable infinite-dimensional Banach spaces are F-manifolds. A Fréchet manifold is known to admit a complete metric and to be nowhere locally compact.

A Hilbert cube manifold or Q-manifold is a separable metric space with an open cover of sets homeomorphic to open subsets of J^{∞} . A Q-manifold is known to admit a complete metric and to be locally compact. We could, equivalently, specify that a Q-manifold admits an open cover by sets whose closures are homeomorphic to J^{∞} itself.

The following are the principle theorems of this paper.

THEOREM I. If M is any F-manifold, then $s \times M$ is homeomorphic to M. (For a somewhat stronger version of this theorem see the addendum at the end of this paper.)

THEOREM II. If M is any Q-manifold, then $J^{\infty} \times M$ is homeomorphic to M.

Since s is known [2] or [5] to be homeomorphic to $s \times J^{\infty}$, from Theorem I we immediately have the following.

COROLLARY. If M is any F-manifold, then $J^{\infty} \times M$ is homeomorphic to M.

Almost identical proofs of Theorems I and II can be given. We shall explicitly give the proof of Theorem I only. It will be understood that the proof of Theorem I also constitutes a proof of Theorem II with the natural modifications needed such as s replaced by J^{∞} , F-manifold replaced by Q-manifold and open interval factors of s replaced by closed interval factors of J^{∞} .

Presented to the Society, August 29, 1968; received by the editors August 5, 1968.

⁽¹⁾ The research leading to this paper was supported in part under NSF Grants GP-6867 and GP-8637.

In the next section we shall reduce the proof of Theorem I to the proof of Lemma B.

2. Reduction of Theorem I to Lemma B. We begin with a definition.

Let r be a continuous function of a topological space X into the closed unit interval I = [0, 1]. Let $J^{0}(0) = \{0\}$ and for $t \in (0, 1]$, let $J^{0}(t) = (-t, t)$. Then

$$J^0 \times^r X = \{(y, x) \in J^0 \times X : y \in J^0(r(x))\}$$

is the variable product of J^0 by X (with respect to r). Likewise, let s_0 be the origin of s or, where convenient, the single point set consisting of the origin of s and for $t \in (0, 1]$, let $s_t = \prod_{i>0} J_i^0(t)$ where $J_i^0(t) = (-t, t)$. Note that for each t, $s_t \subseteq s$. Then

$$s \times^r X = \{(y, x) \in s \times X : y \in s_{r(x)}\}$$

is the variable product of s by X (with respect to r). If $A \subseteq X$, let $J^0 \times^r A$ (or $s \times^r A$) be the variable product of J^0 (or s) by A (with respect to r|A).

We are now in a position to state Lemmas A and B.

LEMMA A. Let M be an F-manifold, let $V \subset U \subset M$ where V is closed and U is open and is homeomorphic to an open subset of s, and let $s \times^{\tau_0} M$ be a variable product of s by M. There exists a homeomorphism H of $s \times^{\tau_0} M$ onto a variable product $s \times^{\tau} M$ such that (1) $r \leq r_0$, (2) r(V) = 0, and (3) $H \mid s \times^{\tau_0} [(M \setminus U) \cup r_0^{-1}(0)]$ is the identity.

We now reformulate Lemma A in a somewhat more convenient form.

LEMMA B. Let U be an open subset of s, let $V \subset W \subset U$ where W is open and V is closed in U, and let $s \times^{r_0} U$ be a variable product of s by U. There exists a homeomorphism H of $s \times^{r_0} U$ onto a variable product $s \times^r U$ such that $(1) \ r \leq r_0$, $(2) \ r(V) = 0$, and $(3) \ H | s \times^{r_0} [(U \setminus W) \cup r_0^{-1}(0)]$ is the identity.

Proof that Lemma B implies Lemma A. Letting M, V, U, and $s \times^{r_0} M$ be as in the hypothesis of Lemma A, we may let W be any open set in M such that $V \subset W \subset U$ and the closure of W in M is the subset of U. Regarding such U, V, and W as in the hypothesis of Lemma B and regarding r_0 in Lemma B as $r_0 \mid U$, it follows that any homeomorphism H as in the conclusion of Lemma B has an automatic extension to a homeomorphism satisfying the conditions of Lemma A.

Proof that Lemma A implies Theorem I.

- Step 1. As proved in [8] and applied in [3], since M is separable and metric, there exists a countable star-finite open cover G of M with sets homeomorphic to open subsets of s. (By a star-finite cover we shall mean a cover where the closure of each element of the cover intersects the closure of only finitely many elements of the cover.)
- Step 2. We follow a procedure as used in Theorem 2 of [3]. Let $(g_i)_{i>0}$ be any ordering of the elements of G. Let $E_1 = \{g_1\}$ and inductively let E_{i+1} be the set containing the least indexed element g_k which is not in $\bigcup_{j \le i} E_i$ together with all the elements of G which are not in $\bigcup_{j \le i} E_j$ and which intersect some element of

 E_i . Clearly each E_i must be finite. We now order the elements of G as $(U_i)_{i>0}$ by first listing the element of E_1 and then inductively listing the elements of E_{2n+1} followed by those of E_{2n} . It is easy to verify that for any sequence $(H_i)_{i>0}$ of homeomorphisms, it will follow that $(H_i \circ \cdots \circ H_1)_{i>0}$ converges to a homeomorphism of $s \times M$ onto $\bigcap_{i>0} H_i \circ \cdots \circ H_1(s \times M)$ provided (1) H_1 maps $s \times M$ into itself with $H_1|s \times (M \setminus U_1) = identity$ and (2) for each i > 0, H_{i+1} maps $H_i \circ \cdots$ $\circ H_1(s \times M)$ into itself with $H_{i+1}[s \times (M \setminus U_{i+1})] \cap H_i \circ \cdots \circ H_1(s \times M) = identity$. Step 3. We now apply Lemma A inductively to define $(H_i)_{i>0}$ as in Step 2 with $\bigcap_{i>0} H_i \circ \cdots \circ H_1(s \times M) = s_0 \times M$ which is homeomorphic to M. For each i>0, let $V_i \subset U_i$ where V_i is closed and $\{V_i\}_{i>0}$ covers M. By Lemma A there exists a homeomorphism H_1 of $s \times M$ onto a variable product $s \times^{r_1} M$ such that $r_1(V_1) = 0$ and $H_1|s\times (M\setminus U_1)=$ identity. Inductively, by Lemma A let H_{i+1} be a homeomorphism of $s \times^{r_i} M$ onto a variable product $s \times^{r_{i+1}} M$ where $r_{i+1} \le r_i$, $r_{i+1}(V_{i+1}) = 0$, and $H_{i+1}|s \times^{r_i} (M \setminus U_{i+1}) = identity$. Hence, by Step 2 and by the definition of the H_i we have $(H_i \circ \cdots \circ H_1)_{i>0}$ converging to a homeomorphism of $s \times M$ onto $s_0 \times M$ which is homeomorphic to M.

3. Introduction to the proof of Lemma B. The proof of Lemma B will be given in §§3, 4, 5, and 6. It will be shown that the homeomorphism H of Lemma B can effectively be defined on $s \times U \setminus r_0^{-1}(0)$ instead of on the variable product $s \times^{r_0} U$. In fact, H will ultimately be described by means of various interchanges of coordinates on $(y_1, y_2, \ldots, z_1, z_2, \ldots) \in s \times U \setminus r_0^{-1}(0)$ where $(y_1, y_2, \ldots) \in s$ and $(z_1, z_2, \ldots) \in U \setminus r_0^{-1}(0)$. In order that H be continuous and a variable product we shall also shrink the coordinates in the y_i coordinate places. We now become more explicit in our discussion.

Let $\{\alpha_i\}_{i>0}$ be a collection of disjoint infinite sets of integers whose union is the set of positive integers such that if the elements of each α_i are monotonically ordered as $(i, 1), (i, 2), \ldots$, then (i, j) < (k, j) for i < k. The interchangings and shrinkings of coordinates are to occur only within the systems $(y_i, z_{(i,1)}, z_{(i,2)}, \ldots)$ but on all such systems simultaneously. Indeed, the interchanges and shrinkings to be described will be independent of i and thus may be described simply by describing for any i>0 the procedure for $(y_i, z_{(i,1)}, z_{(i,2)}, \ldots)$. If $p=(y_1, y_2, \ldots, z_1, z_2, \ldots)$ $\in s \times s$, let $p^i=(y_i, z_{(i,1)}, z_{(i,2)}, \ldots)$ and for notational simplicity we shall refer to such a sequence as (x_0, x_1, x_2, \ldots) . Thus, $\{p^i: p \in s \times s\} = J_i^0 \times \prod_{j>0} J_{(i,j)}^0$ and we will denote this by X_0^∞ . At our convenience we shall regard X_0^∞ as $\prod_{j\geq0} X_j$ where $X_0=J_i^0$ and for j>0, $X_j=J_{(i,j)}^0$.

To analyze the types of coordinates of points $(y_1, y_2, ..., z_1, z_2, ...)$ in $s \times (U \setminus r_0^{-1}(0))$ we note for i > 0, that y_i ranges over the interval (-1, 1) whereas the z_i 's are restricted by the requirement that $(z_1, z_2, ...) \in U \setminus r_0^{-1}(0)$. However, since such a set is open in s, for a fixed point $(z_1, z_2, ...)$ in $U \setminus r_0^{-1}(0)$ there exists an integer n such that $\{z_1\} \times \cdots \times \{z_n\} \times \prod_{i>n} J_i^0 \subset U \setminus r_0^{-1}(0)$.

We now make some definitions. An open set E of s is an n-basic open set in s

if $E = E_1 \times \cdots \times E_n \times \prod_{i>n} J_i^0$ where each E_i is open in J_i^0 and is a subinterval but not necessarily a proper subinterval of J_i^0 . E is a basic open set in s if E is an n-basic open set in s for some n. We correspondingly define an n-basic open set in J^∞ by replacing s with J^∞ and J_i^0 with J_i in the above. Thus, if E is an n-basic open set in s (or J^∞) and $m \ge n$ then E is also an m-basic open set in s (or J^∞). If W is a subset of s, let $\pi: s \times W \to W$ be the natural projection onto W and for n > 0, let π_n be defined on W as follows. For $z = (z_1, z_2, \ldots) \in W$, let $\pi_n(z) = (z_1, \ldots, z_n, 0, 0, \ldots)$. Note that in general π_n does not map into W but in our applications it usually does. Also, if Y is a space and $f: W \to Y$ is a function, define $f^*: s \times W \to Y$ by $f^* = f\pi$.

DEFINITION. Let W be an open subset of s and let $\{G_i\}$ be a star finite collection of m_i -basic open sets in s (that is, for each i, G_i is m_i -basic) whose union is W. For each $x \in W$, let

$$m_x = \min \{ m_i : x \in G_i \}.$$

Let Y be a topological space. A map, i.e. continuous function, $f: W \to Y$ is a local product map of W with respect to the G_i and m_i if $f(x)=f(\pi_{m_x}(x))$ for each $x \in W$. If, additionally, $Y=[1, \infty)$ and $f(x) \ge m_x$ for each $x \in W$, then f is a local product indicator map of W with respect to the G_i and m_i .

A special case of Lemma B. We introduce, in a very special case, some of the procedures and notation to be used later. We shall assume the notation and conventions already introduced. For this special case of Lemma B we shall assume that for some n>0, (1) the open sets U and W are n-basic open sets in s, (2) V is the closure of an n-basic open set in s, and (3) $r_0(x)=1$ for each $x \in U$. Observe that condition (3) implies that $s \times^{r_0} U = s \times U$. In the general case we shall not have this obvious product structure with respect to U, W, and V and will have to identify suitable local product structures with respect to these sets and $r_0^{-1}(0)$. Now, consider the space X_0^{∞} of points $p^i = (y_i, z_{(i,1)}, z_{(i,2)}, \ldots)$ that have been relabeled (x_0, x_1, x_2, \ldots) . If the procedure to be described for interchanging coordinates in X_0^{∞} leaves the x_1, \ldots, x_n coordinates of points in X_0^{∞} fixed, then the induced function will carry each point of $s \times U$ to a point of $s \times U$.

The desired homeomorphism H of $s \times U$ onto $s \times^r U$ will be expressed in terms of a map h of $X_0^{\infty} \times I \times \{n\}$ into X_0^{∞} (with $\{n\}$ a single point set for our special case). The map h is to be an isotopy such that for $x = (x_0, x_1, \ldots) \in X_0^{\infty}$ we have h(x, 0, n) = x and

$$h(x, 1, n) = (0, x_1, \ldots, x_n, -x_0, -x_{n+1}, -x_{n+2}, \ldots).$$

To finish the description of h we first describe a map h' of $X_0^{\infty} \times [0, 1) \times \{n\}$ into X_0^{∞} and then modify h' so as to produce h. Let h'(x, 0, n) = x and for each integer i > 0, let

$$h'(x, 1-2^{-i}, n) = (x_{n+i}, x_1, \ldots, x_n, -x_0, -x_{n+1}, \ldots, -x_{n+i-1}, x_{n+i+1}, \ldots).$$

Note that for $k=1,2,\ldots,n,n+i+1,n+i+2,\ldots$, the k coordinate is fixed. In order to define h' it is merely necessary to "fill in the gaps", for the various i, for t between $1-2^{-i}$ and $1-2^{-i-1}$. Note that the coordinate formulas for $h'(x,1-2^{-i},n)$ and $h'(x,1-2^{-i-1},n)$ differ only in the original 0th and (n+i+1)th places. In these two places we have x_{n+i} and x_{n+i+1} in the first case and x_{n+i+1} and $-x_{n+i}$ in the second case. Thus we may "rotate" the coordinate space $X_0 \times X_{n+i+1}$ to change these two coordinates as required. Technically, since $X_0 \times X_{n+i+1}$ is an open square, we first contract the square onto the circular disc $x_0^2 + x_{n+i+1}^2 < 1$, rotate the disc clockwise by a quarter turn and then expand it to the open square. For each $t \in [1-2^{-i}, 1-2^{-i-1}]$, the 0th and (n+i+1)th coordinates of h'(x, t, n) are to be the induced combination of x_{i+1} and x_{n+i+1} obtained by linearly identifying t with the appropriate stage of the rotation. For $t \in [1-2^{-i}, 1-2^{-i-1}]$ all other coordinates are those of $h'(x, 1-2^{-i}, n)$.

Finally to obtain h from h' for 0 < t < 1 we scale down the 0th coordinate by a factor of (1-t). That is, define $\mu: X_0^{\infty} \times I \to X_0^{\infty}$ by $\mu(x, t) = ([1-t]x_0, x_1, \ldots)$ and then define h by $h(x, t, n) = \mu(h'(x, t, n), t)$. Such an h is clearly continuous.

With h defined we can now define H. First, let ϕ be a map of U onto I such that $\phi(U \setminus W) = 0$, $\phi(V) = 1$, and $\phi(z) = \phi(\pi_n(z))$ for each $z \in U$. The last condition makes ϕ a special kind of product map and such a ϕ may be defined by first defining a map ϕ' on $\pi_n(U)$ such that $\phi'(\pi_n(z)) = 0$ for $z \in U \setminus W$ and $\phi'(\pi_n(z)) = 1$ for $z \in V$. Then define ϕ by $\phi = \phi' \pi_n$.

We now define $H: s \times U \to s \times U$ as follows. For $p = (y_1, y_2, ..., z_1, z_2, ...)$ $\in s \times U$, recall that $p^i = (y_i, z_{(i,1)}, z_{(i,2)}, ...)$. Let $[H(p)]^i = h(p^i, \phi^*(p), n)$. It is easy to verify that the map H is a homeomorphism of $s \times U$ onto the variable product $s \times^r U$ where $r = 1 - \phi$ and furthermore $H \mid s \times (U \setminus W)$ is the identity.

4. Lemma B: The general case. For the proof of Lemma B in the general case the sets U, V, and W need not be as nice as those used above. In particular, the sets U and W might be infinite unions of sets of the form of U in the special case where the values of n increase without bound. Furthermore the closed set V need not have any obvious product structure. Thus, instead of having a fixed n we have to introduce a new variable into our isotopy function n which will allow us to pick out an n for a particular local product structure and to continuously vary this value as the local product structure changes. Hence, we want to define a map

$$h: X_0^{\infty} \times I \times [1, \infty) \to X_0^{\infty}$$

such that for each integer $n \in [1, \infty)$ and each $x = (x_0, x_1, \ldots) \in X_0^{\infty}$, as t varies from 0 to 1, h(x, t, n) goes through the same motion as described in the special case above taking x at time $t = 1 - 2^{-t}$ to the point

$$(2^{-i}x_{n+i}, x_1, \ldots, x_n, -x_0, -x_{n+1}, \ldots, -x_{n+i-1}, x_{n+i+1}, \ldots)$$

and to $(0, x_1, ..., x_n, -x_0, -x_{n+1}, ...)$ at t=1. Also we specify that for any $n \le u < n+1$ and any $t \in I$, h(x, t, u) has the same x_1 to x_n coordinates as x and that

the coordinate in the 0th place has been shrunk by a factor of 1-t. Finally, for h to be continuous at t=1 we specify for $n \le u < n+1$ that h(x, 1, u) is the appropriate intermediate value between h(x, 1, n) and h(x, 1, n+1). These two points differ only in the (n+1)th and (n+2)th coordinate places. In these places we have $-x_0$ and $-x_{n+1}$ in the first case and x_{n+1} and $-x_0$ in the second case and for the intermediate value u we take the appropriate "rotation" on these two coordinates leaving all other coordinates the same.

In the rest of this section we will prove Lemma B except for the proofs of Lemmas C, E, and F. The proof of Lemma C will be postponed to $\S 6$ and amounts to the construction of the map h described above. Lemmas E and F will be proved in $\S 5$ and will assert the existence of appropriate local product maps ϕ and g that will provide the values for the variables t and u, respectively, in the definition of the homeomorphism H. We are now ready to state

LEMMA C. There exists a map

$$h: X_0^{\infty} \times I \times [1, \infty) \rightarrow X_0^{\infty}$$

such that if $t \in I$ and $u \in [1, \infty)$ are fixed where $n \leq u$, then the map $H: s \times s \to s \times s$ defined by $[H(p)]^i = h(p^i, t, u)$ for $p \in s \times s$ is a homeomorphism of $s \times s$ onto $s \times^r s$ where (1) r is the constant function 1-t, (2) if t=0, then H is the identity, and (3) $\pi_n^* = \pi_n^* H$.

We will now modify Lemma C by using local product maps ϕ and g in place of the t and u respectively.

LEMMA D. Let W be any open subset of s, let $s \times^{r_0} W$ be a variable product of s by W where $r_0(x) > 0$ for each $x \in W$, and let $\{G_i\}$ be a star finite collection of m_i -basic open sets covering W. Let $\phi: W \to I$ and $g: W \to [1, \infty)$ be local product and local product indicator maps of W, respectively, with respect to the G_i and m_i . There exists an onto homeomorphism

$$H: s \times^{r_0} W \to s \times^r W$$

where (1) $r = (1 - \phi)r_0$ and (2) $H|s \times^{r_0} \phi^{-1}(0)$ is the identity.

Proof. Clearly the map k from $s \times^{r_0} W$ to $s \times W$ defined by $k(y, z) = (yr_0^{-1}(z), z)$ is an onto homeomorphism. Let h be the map of Lemma C and define H_1 : $s \times W \to s \times s$ by $[H_1(p)]^i = h(p^i, \phi^*(p), g^*(p))$ for i > 0 and $p \in s \times W$. By condition (3) of Lemma C together with the local product map properties with respect to the G_i and m_i we observe (1) that H_1 maps $s \times W$ onto $s \times^{r_1} W$ where $r_1 = 1 - \phi$ and (2) that $\phi^* = \phi^* H_1$ and $g^* = g^* H_1$. Property (1) follows since if $p \in s \times W$ where $n \le g^*(p)$, then H_1 carries the set $(\pi_n^*)^{-1} \pi_n^*(p)$ onto itself and (2) follows since $\phi^*(p) = \phi \pi_n \pi(p) = \phi \pi_n^*(p) = \phi \pi_n^* H_1(p) = \phi^* H_1(p)$ and similarly, for g^* . We now show that H_1 has a continuous inverse.

Define G from $s \times^{r_1} W$ to $s \times W$ as follows. Let $b \in s \times^{r_1} W$ and let $H_b : s \times W \to s \times^{r_b} s$ be defined by

$$[H_b(p)]^i = h(p^i, \phi^*(b), g^*(b))$$
 for $i > 0$ and $p \in s \times W$,

where $r_b = 1 - \phi^*(b)$. Let $x = G(b) = H_b^{-1}(b)$. Since $\phi^* = \phi^* H_1$ and $g^* = g^* H_1$ we have $H_1(x) = b$. Hence, it is clear that G is the inverse of H_1 and G is continuous since h, ϕ , and g are. Thus, H_1 is a homeomorphism. We now observe that H defined on $s \times r_0 W$ by $k^{-1} H_1 k$ is a homeomorphism onto $s \times r_0 W$ where $r = (1 - \phi) r_0$ and that condition (2) of Lemma D is clear. \square

The next lemma will guarantee us that the proper kind of ϕ function can be constructed.

LEMMA E. Let U be an open subset of s and let $V \subset W \subset U$ and $A \subset U$ where W is open and V and A are closed relative to U. There exists a countable star finite collection $\{G_i\}$ of m_i -basic open sets in s whose union is $W \setminus A$ and a map $\phi: U \setminus A \to I$ such that $\phi(V \setminus A) = 1$, $\phi((U \setminus W) \setminus A) = 0$ and $\phi(W \setminus A)$ is a local product map of $W \setminus A$ with respect to the G_i and m_i .

Proof. (See §5.)

The next lemma asserts the existence of the proper kind of g function. Assume the same hypothesis as in Lemma E.

LEMMA F. The collections $\{G_i\}$ and $\{m_i\}$ of Lemma E can be chosen such that there exists a local product indicator map $g\colon W\backslash A\to [1,\infty)$ with respect to the G_i and m_i where g is unbounded near A, that is, for any $x\in A\cap \operatorname{Cl}(W\backslash A)$ and any n>0, there is a neighborhood B(x) such that $g|(W\backslash A)\cap B(x)>n$. (By $\operatorname{Cl} C$ we mean the closure of C.)

Proof. (See §5.)

We now restate Lemma B and prove it on the basis of the apparatus we have set up.

LEMMA B. Let U be an open subset of s, let $V \subset W \subset U$ where W is open and V is closed in U, and let $s \times^{r_0} U$ be a variable product of s by U. There exists a homeomorphism H of $s \times^{r_0} U$ onto a variable product $s \times^{r} U$ such that (1) $r \leq r_0$, (2) r(V) = 0, and (3) $H|s \times^{r_0} [(U \setminus W) \cup r_0^{-1}(0)]$ is the identity.

Proof. By Lemmas E and F take a star finite collection $\{G_i\}$ of m_i -basic open sets and maps ϕ and g satisfying the conditions of the lemmas for the case where $A = r_0^{-1}(0)$.

Now let H' be the homeomorphism H of Lemma D defined with respect to $W \setminus r_0^{-1}(0)$, ϕ , and g. Define H on $s \times^{r_0} U$ by extending H' to the rest of $s \times^{r_0} U$ with the identity function. Thus, if this extension is continuous, then H will be a homeomorphism of $s \times^{r_0} U$ onto $s \times^r U$ where $r = (1 - \phi)r_0$ on $W \setminus r_0^{-1}(0)$ and $r = r_0$ on $(U \setminus W) \cup r_0^{-1}(0)$. We now show that this extension is continuous. Since

 $\phi((U\backslash W)\backslash r_0^{-1}(0))=0$, by condition (2) of Lemma D the identity map on $s\times^{r_0}[(U\backslash W)\backslash r_0^{-1}(0)]$ and $H|s\times (W\backslash r_0^{-1}(0))$ are compatible. To show that these are compatible with the identity on $s\times^{r_0}r_0^{-1}(0)$ we will check the coordinate-wise continuity of H. The continuity of r_0 gives the continuity of H on the first, or s, coordinate and g becoming unbounded near $r_0^{-1}(0)$ yields the continuity of H on the second, or U, coordinate. Since conditions 1 and 2 of the statement of Lemma B are clear the proof is complete. \square

5. **Proofs of Lemmas E and F.** Before proving Lemmas E and F we shall need a definition and another lemma.

Let E be a basic open set in s and let $n = \min \{i : E \text{ is } i\text{-basic}\}$. Then $E = E_1 \times \cdots \times E_n \times \prod_{i>n} J_i^0$ where each E_i is an open subinterval of J_i^0 . We say that $E^+ = E_1 \times \cdots \times E_n \times \prod_{i>n} J_i$ is the n-basic open set in J^{∞} associated with E. Note that $E = E^+ \cap s$.

LEMMA G. Let U be an open subset of s and let $V \subseteq W \subseteq U$ and $A \subseteq U$ where W is open and V and A are closed in U. There exist countable collections $\{W_i\}_{i\geq 0}$ and $\{G_i\}_{i>0}$ of open sets in U such that

- (1) $V \subset W_0$, Cl $W_i \subset W_{i+1} \subset W$ for each $i \ge 0$ and the union of the W_i 's is W.
- (2) $G = \{G_i\}_{i>0}$ is a star finite collection of basic open sets in s whose union is $W \setminus A$ such that for each i, $Cl G_i \subseteq W \setminus A$ and if for some j, $Cl G_j$ intersects $(Cl W_i) \setminus W_{i-1}$, then $Cl G_j \subseteq W_{i+1} \setminus Cl W_{i-2}$.

Proof. We assert the existence of the W_i on the basis of standard elementary techniques of point-set topology. If B is a subset of U, let B' denote $B \setminus A$. Now, for each $x \in (Cl\ W_1)'$ let G_x be a basic open set in s contained in W_2' . For i > 1 and for each $x \in (Cl\ W_i)' \setminus W_{i-1}$ let G_x be a basic open set in s contained in $W'_{i+1} \setminus Cl\ W_{i-2}$. Let H be the collection of all the G_x . The space s is naturally imbedded in J^{∞} . For each G_x let G_x^+ be the basic open set in J^{∞} associated with G_x and let W^+ be the union of all such G_x^+ . Note that $W \setminus A = W^+ \cap s$. Let

$$F = \{B \mid B \text{ is basic open in } J^{\infty} \text{ and for some } G_x \in H, \text{ Cl } B \subset G_x^+\}$$

and let $\{M_i\}_{i\geq 0}$ be a sequence of compact subsets of J^{∞} such that for each $i\geq 0$, $M_i \subset M_{i+1}^0$ and $\bigcup_{i\geq 0} M_i = W^+$. Cover M_1 with elements of F whose closures are contained in M_2^0 and by compactness extract a finite subcover F_1 . For i>1, cover $\operatorname{Cl}(M_i \backslash M_{i-1})$ with elements of F whose closures are contained in $M_{i+1}^0 \backslash M_{i-2}$ and by compactness extract a finite subcover F_i . Thus, one can find a countable star finite open cover G^+ of W^+ with basic open sets in J^{∞} . Now let G be the collection of intersections of the elements of G^+ and S. Note that the closure of each element of G is contained in $W \backslash A$. \square

We are now ready for the

Proof of Lemma E. Let $\{W_i\}_{i\geq 0}$ and $\{G_i\}_{i>0}$ be as in the conclusion of Lemma G.

Let

$$B_1 = \{G_i : \operatorname{Cl} G_i \cap V \neq \emptyset\}$$

and for k > 1, let

 $B_k = \{G_i : G_i \notin \bigcup_{q=1}^{k-1} B_q \text{ and there exists } G_j \in B_{k-1} \text{ such that } (\operatorname{Cl} G_i) \cap (\operatorname{Cl} G_j) \neq \emptyset \}.$

For each G_i , let $n(G_i) = \min \{n : G_i \text{ is } n\text{-basic}\}$ and $m(G_i) = \max \{n(G_j) : \text{Cl } G_i \cap \text{Cl } G_j \neq \emptyset \}$. Now, let $\{G_{2,i}\}$ be an enumeration of B_2 and inductively pick $m_{2,i} \geq m(G_{2,i})$ such that $m_{2,i+1} \geq m_{2,i}$. For k > 2 let $\{G_{k,i}\}$ be an enumeration of B_k and pick $m_{k,i} \geq m(G_{k,i})$ such that $m_{k,i+1} \geq m_{k,i}$ and if $\text{Cl } G_{k,i} \cap \text{Cl } G_{k-1,j} \neq \emptyset$, then $m_{k,i} \geq m_{k-1,j}$. Now, if $G_i = G_{k,j}$ for some k and j, let $m_i = m_{k,j}$ and if $G_i \notin \bigcup_{j>1} B_j$, let $m_i = m(G_i)$.

Define ϕ to be 1 on the union of the closures of the elements of B_1 and extend ϕ to the union of the closures of the elements of B_2 by induction on the i in $\{G_{2,i}\}$. The induction step is the same as the first step so we shall only give the induction step. For i=k, use the Tietze extension theorem to extend ϕ to $\operatorname{Cl} G_{2,k}$ such that if $x \in \operatorname{Cl} G_{2,k} \cap \operatorname{Cl} G_{3,j}$, for some j, then $\phi(x) = \frac{1}{2}$, and if $x \in G_{2,k}$ then $1/2 \leq \phi(x) \leq 1$ and $\phi(x) = \phi(\pi_{m_{2,k}}(x))$. This is possible since you first do it on the finite dimensional cell $\pi_{m_{2,k}}(\operatorname{Cl} G_{2,k})$ and then extend to all of $\operatorname{Cl} G_{2,k}$ using the product structure. Extend ϕ to the rest of $\bigcup_{k>1,i>0}\operatorname{Cl} G_{k,i}$ such that if $x \in \operatorname{Cl} G_{k,i} \cap \operatorname{Cl} G_{k+1,j}$, for some j, then $\phi(x) = 2^{-k+1}$, and if $x \in \operatorname{Cl} G_{k,i}$, then $2^{-k+1} \leq \phi(x) \leq 2^{-k+2}$ and $\phi(x) = \phi(\pi_{m_{k,i}}(x))$. Let $\phi(x) = 0$ for $x \in (U \setminus A) \setminus \bigcup_{k>0,i>0}\operatorname{Cl} G_{k,i}$. Condition (2) of Lemma G guarantees, except for the case when V = W = U, that ϕ is continuous. If V = U, then ϕ is the constant function 1. Thus, in any case we have satisfied the conditions of the lemma. \square

Proof of Lemma F. In the proof of the last lemma we could just as well have chosen the m_i such that for each i>0, $m_{i+1} \ge m_i$ and that the m_i increase without bound. Assume this had been done. We now construct a local product indicator map $g: W \setminus A \to [1, \infty)$. For each i>0, let C_i denote the closure of G_i in J^{∞} , recalling that $G_i \subset W \setminus A \subset s \subset J^{\infty}$. As a matter of convenience we shall define g on the union of the C_i and then restrict the function to $W \setminus A$ which is the common part of s and this union.

For each i>0, let $r_i=\max \{m_j: C_j\cap C_i\neq\emptyset\}$. Define g to be r_1 on C_1 . We now extend to the rest of the C_i by induction. Assume that k>1 is an integer and that g has been extended to $\bigcup_{i=1}^{k-1} C_i$ such that if $x\in\bigcup_{i=1}^{k-1} C_i$ and $m_j=\min\{m_i:x\in C_i,\,i=1,\ldots,k-1\}$, then $g(x)=g(\pi_{m_j}(x))$ and $g(x)\geq r_j\geq m_j$. To extend g to C_k we have three cases: (1) g has been defined on C_k , (2) g has been defined for no point of C_k and (3) g has been defined for a proper nonvoid subset of C_k . If (1), proceed to C_{k+1} . If (2), define g to be r_k on C_k . If (3), proceed as follows. Let H_k be the set of all C_i that intersect C_k and such that g has been defined for no point of this intersection. Define g to be r_k on $C_i \cap C_k$, for each $C_i \in H_k$. Now take the set of all C_i not in H_k , $i\geq k$, that intersect C_k and such that g has been defined

for some point of this intersection and let D_k be the set of all intersections of C_k with intersections of such C_i . Each element B of D_k is the intersection of a certain maximum number of the C_i ; call this number the *index* of B. List the elements of D_k as B_1, \ldots, B_n , according to nonincreasing index. It should be noted that $B_n = C_k$ and that, from the definition of the m_i , each B_i is m_k -basic. We now extend g inductively to the B_i . If g has been defined on all of B_1 , proceed to B_2 . If g has been defined for no point of B_1 , let g be equal to r_k on B_1 , and if g has been defined on a proper nonvoid subset of B_1 , extend g as follows. Use the Tietze extension theorem to extend g to $\pi_{m_k}(B_1)$ where the range of g is the interval bounded by the maximum and minimum of the functional values assigned to points of B_1 . Now, extend g to the rest of B_1 using the product structure. Extend g inductively to the rest of the B_i which, at the last stage, includes C_k . The induction step is the same as the first step.

Thus, by induction we have extended g to the union of the C_i . We now restrict g to $W \setminus A$. By construction, g is a local product indicator map with respect to the G_i and m_i and since the closure in s of each G_i is contained in $W \setminus A$ and since the m_i are unbounded, then g is unbounded near A. \square

6. **Proof of Lemma C.** The proof of Lemma C consists of constructing the map $h \colon X_0^{\infty} \times I \times [1, \infty) \to X_0^{\infty}$

with the required properties. In §3 we have already described $h|X_0^{\infty} \times I \times \{n\}$ for $n \ge 1$. Thus in defining h our problem will be that of extending the function we already have to $h|X_0^{\infty} \times I \times [n-1, n]$ for $n \ge 2$. Let us denote this restriction of h by h_n . Following the pattern of §3 we shall first describe h'_n and then modify it to produce h_n . According to our description of h' in §3 we have the following chart for $x = (x_0, x_1, \ldots) \in X_0^{\infty}$, $t \in I$ and $u \in [n-1, n]$ where y denotes (x_1, \ldots, x_{n-1}) .

u	0	1/2	3/4	7/8
n	x	$(x_{n+1}, y, x_n, -x_0, x_{n+2}, \ldots)$	$(x_{n+2}, y, x_n, -x_0, -x_{n+1}, x_{n+3}, \dots)$	$(x_{n+3}, y, x_n, -x_0, -x_{n+1}, -x_{n+2}, x_{n+4}, \dots)$
n-1	х	$(x_n, y, -x_0, x_{n+1}, x_{n+2}, \ldots)$	$(x_{n+1}, y, -x_0, -x_n, x_{n+2}, x_{n+3}, \dots)$	$(x_{n+2}, y, -x_0, -x_n, -x_{n+1}, x_{n+3}, x_{n+4}, \ldots)$

FIGURE 1

We will describe three maps

- (1) $h'_{n,0}: X_0^{\infty} \times [0, 1/2] \times [n-1, n] \to X_0^{\infty}$,
- (2) $h'_{n,1}: X_0^{\infty} \times [1/2, 3/4] \times [n-1, n] \to X_0^{\infty}$ and
- (3) $h'_{n,2}: X_0^{\infty} \times [3/4, 7/8] \times [n-1, n] \to X_0^{\infty}$,

and then show how to appropriately modify $h'_{n,2}$ to form

$$h'_{n,i}: X_0^{\infty} \times [1-2^{-i}, 1-2^{-i-1}] \times [n-1, n] \to X_0^{\infty}$$

for i > 3, where the $h'_{n,j}$ patched together will yield h'_n .

Description of $h'_{n,0}$. Let ρ'_n be the homeomorphism that takes $X_0 \times X_n \times X_{n+1}$ onto the unit 3-ball $B_n = \{(x_0, x_n, x_{n+1}) : x_0^2 + x_n^2 + x_{n+1}^2 < 1\}$ by shrinking linearly along radii. Let $\rho_n : X_0^\infty \to X_0^\infty$ be defined by $\rho_n = \rho'_n \times id$ where id is the identity function of $\prod_{i \neq 0, n, n+1} X_i$. We now define a map

$$h_{n,0}'': B_n \times [0, 1/2] \times [n-1, n] \to B_n$$

as follows. Consider t and u to be elements of [0, 1/2] and [n-1, n] respectively. For t=0 and $n-1 \le u \le n$ let $h''_{n,0}$ be the identity. For u=n-1, as t goes from 0 to 1/2 let the x_0 and x_n coordinates be rotated (using sine and cosine functions) so that (x_0, x_n, x_{n+1}) is rotated to $(x_n, -x_0, x_{n+1})$. For u=n, as t goes from 0 to 1/2 let the x_0 and x_{n+1} coordinates be rotated so that (x_0, x_n, x_{n+1}) is rotated to $(x_{n+1}, x_n, -x_0)$.

Fill in the rest of the isotopy as follows. For n-1 < u < n take a new axis x_u that is proportionately between x_n and x_{n+1} , see Figure 3, and then rotate x_u and x_0 .

 x_{n+1}), as x_{n+1} and x_n are being rotated, so are $-x_0$ and x_n . Thus, $(x_n, -x_0, x_{n+1})$ ends up as $(x_{n+1}, x_n, -x_0)$. It should be noted that an explicit formula for $h''_{n,0}$ can be displayed as appropriate combinations of the sine and cosine functions.

Now, let $\hat{h}_{n,0} = h''_{n,0} \times \text{id}$ where id is the identity function of $\prod_{i \neq 0, n, n+1} X_i$. Then $h'_{n,0} = \rho_n^{-1} \hat{h}_{n,0} \rho_n$.

Description of $h'_{n,1}$. Let σ'_n be the homeomorphism that takes $X_0 \times X_n \times X_{n+1} \times X_{n+2}$ onto the unit 4-ball

$$C_n = \{(x_0, x_n, x_{n+1}, x_{n+2}) : x_0^2 + x_n^2 + x_{n+1}^2 + x_{n+2}^2 < 1\}$$

by shrinking linearly along radii. Let $\sigma_n: X_0^{\infty} \to X_0^{\infty}$ be defined by $\sigma_n = \sigma'_n \times id$ where id is the identity function of $\prod_{i \neq 0, n, n+1, n+2} X_i$. We now define

$$h_{n,1}'': C_n \times [1/2, 3/4] \times [n-1, n] \to C_n$$

as follows. For $x=(x_0, x_n, x_{n+1}, x_{n+2}) \in C_n$, let $h''_{n,1}(x, 1/2, n-1) = (x_n, -x_0, x_{n+1}, x_{n+2})$ and for t=1/2 as u varies from n-1 to n let $(x_n, -x_0, x_{n+1}, x_{n+2})$ go through the double rotation to $(x_{n+1}, x_n, -x_0, x_{n+2})$ as described in the definition of $h''_{n,0}$ (applied to the first three coordinates of x, keeping the x_{n+2} coordinates fixed). See Figure 4. For u=n-1 and as t goes from 1/2 to 3/4 let x_n and x_{n+1} be rotated

FIGURE 4

such that $(x_n, -x_0, x_{n+1}, x_{n+2})$ is rotated to $(x_{n+1}, -x_0, -x_n, x_{n+2})$. We now describe a rotation corresponding to the diagonal $\{(t, u): 1/2 \le t \le 3/4, u = -4t + n+2\}$ of $[1/2, 3/4] \times [n-1, n]$. As (t, u), where u = -4t + n + 2, varies from

(1/2, n) to (3/4, n-1), the x_n and $-x_0$ coordinates are rotated so that $(x_{n+1}, x_n, -x_0, x_{n+2})$ is rotated to $(x_{n+1}, -x_0, -x_n, x_{n+2})$. Note that the double rotation corresponding to the path determined by $1/2 \times [n-1, n]$ is a combination of the rotations corresponding to the path determined by $[1/2, 3/4] \times \{n-1\}$ and the diagonal. Hence, the map $h''_{n,1}$ extends to the interior of the corresponding triangle. For u=n as t varies from 1/2 to 3/4, rotate the x_{n+1} and x_{n+2} coordinates so that $(x_{n+1}, x_n, -x_0, x_{n+2})$ rotates to $(x_{n+2}, x_n, -x_0, -x_{n+1})$. For t=3/4 as u varies from n-1 to n we have a double rotation; $-x_0$ and $-x_n$ are rotated and independently but at the same time $-x_{n+1}$ and x_{n+2} are rotated so that $(x_{n+1}, -x_0, -x_n, x_{n+2})$ is rotated to $(x_{n+2}, x_n, -x_0, -x_{n+1})$. Note, for the triangle above the diagonal, that the rotations break up into pairs corresponding to Figure 5. Hence

FIGURE 5

we can extend $h''_{n,1}$ to this triangle and the definition of $h''_{n,1}$ is complete. Now let $\hat{h}_{n,1} = h''_{n,1} \times id$ where id is the identity function of $\prod_{i \neq 0, n, n+1, n+2} X_i$. Then $h'_{n,1} = \sigma_n^{-1} \hat{h}_{n,1} \sigma_n$.

Description of $h'_{n,2}$. Let τ'_n be the homeomorphism of $X_0 \times X_n \times X_{n+1} \times X_{n+2} \times X_{n+3}$ onto

$$D_n = \{(x_0, x_n, x_{n+1}, x_{n+2}, x_{n+3}) : x_n^2 + x_{n+1}^2 < 1 \text{ and } x_0^2 + x_{n+2}^2 + x_{n+3}^2 < 1\}$$

by shrinking linearly along radii. Note that D_n is homeomorphic to the cartesian product of the 2-ball $E_n = \{(x_n, x_{n+1}) : x_n^2 + x_{n+1}^2 < 1\}$ and the 3-ball

$$F_n = \{(x_0, x_{n+2}, x_{n+3}) : x_0^2 + x_{n+2}^2 + x_{n+3}^2 < 1\}.$$

At our convenience we may think of D_n as it is defined or as $E_n \times F_n$. Let $\tau_n \colon X_0^\infty \to X_0^\infty$ be defined by $\tau_n = \tau_n' \times \mathrm{id}$ where id is the identity function on $\prod_{i \neq 0, n, n+1, n+2, n+3} X_i$. We now define a map

$$h_{n,2}'': D_n \times [3/4, 7/8] \times [n-1, n] \to D_n$$

as follows. For $x = (x_0, x_n, x_{n+1}, x_{n+2}, x_{n+3}) \in D_n$, let

FIGURE 6

 $h_{n,2}''(x,3/4,0)=(x_{n+1},-x_0,-x_n,x_{n+2},x_{n+3})=((-x_0,-x_n),(x_{n+1},x_{n+2},x_{n,3}))$ and for t=3/4, as u varies from n-1 to n, take the double rotation described in the definition of $h''_{n,1}$. That is $(x_{n+1}, -x_0, -x_n, x_{n+2}, x_{n+3})$ is rotated to $(x_{n+2}, x_n, -x_0, -x_{n+1}, x_{n+3})$. Note that the rotations are done independently in the 2-ball and 3-ball respectively, and in the 3-ball the rotation is done only in the x_{n+1} , x_{n+2} -plane leaving the x_{n+3} coordinate fixed. We now describe the rotations on the 2-ball. If $3/4 \le t \le 7/8$, as u varies from n-1 to n rotate $(-x_0, -x_n)$ to $(x_n, -x_0)$. That is, for each value of t, as u varies from n-1 to n we have the same rotation. We next describe the rotations on the 3-ball. For u=n-1, as t varies from 3/4 to 7/8 we rotate $(x_{n+1}, x_{n+2}, x_{n+3})$ to $(x_{n+2}, -x_{n+1}, x_{n+3})$. Note that this is the same rotation we have for t=3/4 as u varies from n-1 to n. We now fill in the other two legs of the rectangle. That is, for u=n, as t varies from 3/4 to 7/8 we have $(x_{n+2}, -x_{n+1}, x_{n+3})$ rotated to $(x_{n+3}, -x_{n+1}, -x_{n+2})$ and for t=3/4, as u varies from n-1 to n we have the same rotation. Since both paths from (3/4, n-1) to (7/8, n) induce the same rotations, the map $h''_{n,2}$ is extendible to the interior of the rectangle.

Let $\hat{h}_{n,2} = h''_{n,2} \times \text{id}$ where id is the identity function on $\prod_{i \neq 0, n, n+1, n+2, n+3} X_i$. Then $h'_{n,2} = \tau_n^{-1} \hat{h}_{n,1} \tau_n$.

We shall now describe what we mean by appropriately modified copies of $h'_{n,2}$ for the subintervals $[1-2^{-i}, 1-2^{-i-1}]$, $i \ge 3$. We describe the required rotation. For the *n*th and (n+1)th coordinate places we want $(-x_0, -x_n)$ rotated to $(x_n, -x_0)$ as *u* varies from n-1 to *n*. Otherwise we want to act on the 0th, (n+i)th and (n+i+1)th coordinate places where the points

$$(x_{n+i}, -x_{n+i-1}, x_{n+i+1})$$
 $(x_{n+i+1}, -x_{n+i-1}, -x_{n+i})$
 $(x_{n+i-1}, x_{n+i}, x_{n+i+1})$ $(x_{n+i}, -x_{n+i-1}, x_{n+i+1})$

correspond respectively to the lattice points of $[1-2^{-i}, 1-2^{-i-1}] \times [n-1, n]$. These rotations for the case i=2 are precisely what $h''_{n,2}$ was designed to do. Indeed, in defining $h'_{n,2}$ we could just as well have defined, for i>2,

$$h'_{n,i}: X_0^{\infty} \times [1-2^{-i}, 1-2^{-i-1}] \times [n-1, n] \to X_0^{\infty}.$$

It should be noted for $t = 1 - 2^{-t}$ ($i \ge 3$), $x \in X_0^{\infty}$ and $n - 1 \le u \le n$, that $h'_{n,i-1}(x, t, u) = h'_{n,i}(x, t, u)$.

The map h_n . Let

$$h'_n: X_0^{\infty} \times [0, 1) \times [n-1, n] \rightarrow X_0^{\infty}$$

be the map obtained by patching together the $h'_{n,j}$ for $j \ge 0$. To scale down the 0th coordinate we define $\mu: X_0^{\infty} \times I \to X_0^{\infty}$ as follows. For $x = (x_0, x_1, \ldots) \in X_0^{\infty}$ and $t \in I$, let $\mu(x, t) = ([1-t]x_0, x_1, \ldots)$. From h'_n we define

$$h_n: X_0^{\infty} \times I \times [n-1, n] \to X_0^{\infty}$$

for n>1 as follows. For $x \in X_0^{\infty}$, $t \in [0, 1)$, and $u \in [n-1, n]$, let $h_n(x, t, u) = \mu(h'_n(x, t, u), t)$ and for t=1, as u varies from n-1 to n let $(0, x_1, \ldots, x_{n-1}, -x_0, -x_n, -x_{n+1}, \ldots)$ be rotated to $(0, x_1, \ldots, x_{n-1}, x_n, -x_0, -x_{n+1}, \ldots)$. That is, in the nth and (n+1)th coordinate places we have $(-x_0, -x_n)$ rotated to $(x_n, -x_0)$ leaving the other coordinates fixed. This yields a continuous h_n since in the definition of $h'_{n,i}$, for i>1, we used this same rotation on the nth and (n+1)th coordinate places together with a rotation involving the 0th, (n+i)th, and (n+i+1)th coordinates. The 1-t factor in the 0th coordinate place and the fact that $i \to \infty$ as $t \to 1$ imply continuity for h_n .

Thus, h_n is continuous and for $x \in X_0^{\infty}$, $t \in I$, and for n > 2 we have $h_{n-1}(x, t, n-1) = h_n(x, t, n-1)$. Hence we may patch the h_n together to form

$$h: X_0^{\infty} \times I \times [1, \infty) \to X_0^{\infty}$$
.

It is clear that if $t \in I$ and $u \in [1, \infty)$ where $n \le u$, then $h_0: X_0^\infty \to X_0^\infty$ defined by $h_0(x) = h(x, t, u)$ is a homeomorphism of X_0^∞ onto $X_0 \times X_1^\infty$ such that if t = 0, then h_0 is the identity and that the x_1 to x_n coordinates of a point $x \in X_0^\infty$ remain fixed. Hence, the map H of Lemma C is defined coordinate-wise in terms of various copies of h_0 considered with respect to disjoint sets of coordinates and thus inherits the required properties. \square

ADDENDUM. In [7] David W. Henderson used Theorem I of this paper to prove that any F-manifold can be embedded as an open subset of s. With the aid of this result we obtain the following stronger version of Theorem I.

THEOREM. Let M be any F-manifold and let U be any open cover of M. There exists a homeomorphism $h: s \times M \to M$ such that for each $(x, y) \in s \times M$, there exists $u \in U$ such that y and h(x, y) are elements of u.

Proof. By [7] let f be an open embedding of M into s. Let G be a countable star-finite collection of basic open sets in s whose union is f(M) such that G

refines f(U). Let $g: f(M) \to [1, \infty]$ be a local product indicator map of f(M) with respect to G. Consider the map H of Lemma D defined with respect to $r_0 = 1$, $\phi = 1$, and g. It follows that H is a homeomorphism of $s \times f(M)$ onto f(M) such that for each $(x, z) \in s \times f(M)$ we have H(x, z) belonging to each element of G that also contains g. Thus $g \colon S \times M \to M$ defined by $g \colon F^{-1} \circ H \circ (\operatorname{id} \times f)$ is the required homeomorphism.

REFERENCES

- 1. R. D. Anderson, Hilbert space in homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.
- 2. ——, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216.
- 3. R. D. Anderson, David W. Henderson and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. (to appear).
- 4. C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1965), 251-288.
- 5. Czeslaw Bessaga and Victor Klee, Every non-normable Fréchet space is homeomorphic with all of its closed convex bodies, Math. Ann. 163 (1966), 161-166.
- 6. C. Bessaga and A. Pełeczyński, Some remarks on homeomorphisms of F-spaces, Bull. Acad. Polon. Sci. Sér. A Sci. Math. Astronom. Phys. 10 (1962), 265-270.
- 7. David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology (to appear).
- 8. M. I. Kadec, On topological equivalence of separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23-25 = Soviet Math. Dokl. 7 (1966), 319-322.
- 9. S. Kaplan, Homology properties of arbitrary subsets of euclidean spaces, Trans. Amer. Math. Soc. 62 (1947), 248-271

LOUISIANA STATE UNIVERSITY,
BATON ROUGE, LOUISIANA