
FACTORS OF INFINITE-DIMENSIONAL MANIFOLDS

BY

R. D. ANDERSON AND R. SCHORIÍ1)

1. Introduction. Let 7°° denote the Hubert cube, i.e. the countable infinite

product of closed intervals, and let s denote the countable infinite product of open

intervals (or lines as convenient). Specifically, let 7™ = n¡>o A and let s=Yli>0 J?

where for each z>0, 7¡ is the closed interval [—1, 1] and J° is the open interval

(—1, 1). In [1] it was shown that s is homeomorphic to Hubert space, /2, and thus,

on the basis of results in [6] and [7], to all separable infinite-dimensional Fréchet

spaces (and therefore, of course, to all separable infinite-dimensional Banach

spaces).

A Fréchet manifold (or F-manifold) is a separable metric space with an open

cover of sets each homeomorphic to an open subset of s. Thus all separable metric

Banach manifolds modeled on separable infinite-dimensional Banach spaces are

F-manifolds. A Fréchet manifold is known to admit a complete metric and to be

nowhere locally compact.

A Hilbert cube manifold or Q-manifold is a separable metric space with an open

cover of sets homeomorphic to open subsets of 7". A g-manifold is known to

admit a complete metric and to be locally compact. We could, equivalently,

specify that a g-rnanifold admits an open cover by sets whose closures are homeo-

morphic to 7°° itself.

The following are the principle theorems of this paper.

Theorem I. If M is any F-manifold, then sx M is homeomorphic to M. (For a

somewhat stronger version of this theorem see the addendum at the end of this paper.)

Theorem II. If M is any Q-manifold, then 7°° x M is homeomorphic to M.

Since i is known [2] or [5] to be homeomorphic to sxjœ, from Theorem I we

immediately have the following.

Corollary. If M isany F-manifold, then 7 e0 x M is homeomorphic to M.

Almost identical proofs of Theorems I and II can be given. We shall explicitly

give the proof of Theorem I only. It will be understood that the proof of Theorem

I also constitutes a proof of Theorem II with the natural modifications needed

such as s replaced by 7", F-manifold replaced by ß-manifold and open interval

factors of i replaced by closed interval factors of 7°°.
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In the next section we shall reduce the proof of Theorem I to the proof of

Lemma B.

2. Reduction of Theorem I to Lemma B.    We begin with a definition.

Let r be a continuous function of a topological space X into the closed unit

interval 7= [0, 1]. Let /°(0)={0} and for t e (0, 1], let J°(t) = (-t, t). Then

J°x'X = {(y, x)eJ°xX:y ej°(r(x))}

is the variable product of 7° by X (with respect to r). Likewise, let s0 be the origin

of s or, where convenient, the single point set consisting of the origin of s and for

re(0,1], let st = Yli>0J?(t) where J?(t) = (-t,t). Note that for each t, st<=s.

Then

sxr X = {(y, x) e s x X : y e srix)}

is the variable product of s by X (with respect to r). If A<= X, let J°xrA (or sx'A)

be the variable product of 7° (or s) by A (with respect to r\A).

We are now in a position to state Lemmas A and B.

Lemma A. Let M be an F-manifold, let Ve U<= M where V is closed and U is open

and is homeomorphic to an open subset of s, and let sxroM be a variable product of

s by M. There exists a homeomorphism H of sxTo M onto a variable product sxr M

such that (1) rSr0, (2) r(V) = 0, and (3) H\sxro[(M\U) u r¿\0)] is the identity.

We now reformulate Lemma A in a somewhat more convenient form.

Lemma B. Let U be an open subset of s, let K<= W<^ ¿y where W is open and V is

closed in U, and let sxroU be a variable product of s by U. There exists a homeo-

morphism Hofs xroJJ onto a variable product sx'U such that (I) r^r0,(2) r(V) = 0,

and(3) H\sxTo[(U\W) u r0-1(0)] is the identity.

Proof that Lemma B implies Lemma A. Letting M, V, U, and ¿xroM be as in

the hypothesis of Lemma A, we may let Wbe any open set in M such that F<= W<= U

and the closure of W in M is the subset of U. Regarding such U, V, and W as in

the hypothesis of Lemma B and regarding r0 in Lemma B as r0\ U, it follows that

any homeomorphism 77 as in the conclusion of Lemma B has an automatic ex-

tension to a homeomorphism satisfying the conditions of Lemma A.

Proof that Lemma A implies Theorem I.

Step 1. As proved in [8] and applied in [3], since M is separable and metric,

there exists a countable star-finite open cover G of M with sets homeomorphic to

open subsets of s. (By a star-finite cover we shall mean a cover where the closure

of each element of the cover intersects the closure of only finitely many elements

of the cover.)

Step 2. We follow a procedure as used in Theorem 2 of [3]. Let (gi)i>0 be any

ordering of the elements of G. Let Ex={gx} and inductively let Ai+1 be the set

containing the least indexed element gk which is not in (Jjé ¡ A¡ together with all

the elements of G which are not in Uiái E¡ and which intersect some element of
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E¡. Clearly each F¡ must be finite. We now order the elements of G as (Ui)i>0 by

first listing the element of Ex and then inductively listing the elements of F2n+1

followed by those of F2n. It is easy to verify that for any sequence (//()i>o of

homeomorphisms, it will follow that (/7¡ o ... o 771)i>0 converges to a homeo-

morphism of sx M onto f)i>o H ° • • • ° Hx(sx M) provided (1) Hx maps sx M

into itself with Hx\sx(M\Ux) = identity and (2) for each i>0, Hi+X maps Hto ■ ■ ■

o Hx(sxM) into itself with 77i+1|[ix(M\(7i+1)] n //f o ... o 77.(5 x M) = identity.

57e/? 3. We now apply Lemma A inductively to define (//()(> 0 as in Step 2 with

Hi>o Ht ° • ■ • ° Hx(sxM)=s0xM which is homeomorphic to M. For each z>0,

let Vi^Ui where Ff is closed and {F¡}i>0 covers M. By Lemma A there exists a

homeomorphism Hx of sx M onto a variable product sxriM such that rx(Vx) = 0

and Hx\sx(M\Ux) = identity. Inductively, by Lemma A let 77i+1 be a homeo-

morphism of sxrtM onto a variable product sxrt+iM where ri+x¿rt, r¡+1(Fí+1)=0,

and //i+1|íxri(M\(7i+1) = identity. Hence, by Step 2 and by the definition of the

H we have (Ht ° • • • ° //i)¡>0 converging to a homeomorphism of sxM onto

50 x M which is homeomorphic to M.    □

3. Introduction to the proof of Lemma B. The proof of Lemma B will be given

in §§3, 4, 5, and 6. It will be shown that the homeomorphism H of Lemma B can

effectively be defined on sx U\ro\0) instead of on the variable product sxroU.

In fact, H will ultimately be described by means of various interchanges of co-

ordinates on (yx,y2,...,z1,z2,...)esxU\ro1(0) where (yx,y2,...) es and

(zx, z2,...)e U\ro\0). In order that H be continuous and a variable product we

shall also shrink the coordinates in the yt coordinate places. We now become more

explicit in our discussion.

Let {ai}i>o be a collection of disjoint infinite sets of integers whose union is the

set of positive integers such that if the elements of each at are monotonically ordered

as (z, 1), (z, 2),..., then (i,j)<(k,j) for i<k. The interchangings and shrinkings

of coordinates are to occur only within the systems (y¡, z(íyl), z(i>2),...) but on all

such systems simultaneously. Indeed, the interchanges and shrinkings to be

described will be independent of i and thus may be described simply by describing

for any z>0 the procedure for (y¡, z(U), z(i>2),...). If p = (yx, y2, ...,zx,z2,...)

esxs, let p'=(yi, Z(i.i), zil¡2),...) and for notational simplicity we shall refer to

such a sequence as (x0, xx, x2,...). Thus, {p* : p esxs}=J°x TI/>o /«,« and we

will denote this by Xo- At our convenience we shall regard Xô as FLêo %i where

A'0=7i° and for;>0, X,=J%,n.

To analyze the types of coordinates of points (yx, y2,..., zx, z2,...) in

s x (U\rö\0)) we note for z>0, that >>, ranges over the interval (-1, 1) whereas the

Z('s are restricted by the requirement that (zx, z2,...) e U\ro\0). However, since

such a set is open in s, for a fixed point (zx, z2,...) in U\röl(S>) there exists an

integer n such that {zx}x ■ ■ ■ x{zn}xYli>nJf<= {/^¿^(O).

We now make some definitions. An open set F of s is an n-basic open set in s
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if E=EX x ■ ■ ■ x En x rii>n J? where each A¡ is open in A0 and is a subinterval but

not necessarily a proper subinterval of A0. A is a basic open set in s if A is an «-

basic open set in s for some n. We correspondingly define an n-basic open set in

A" by replacing s with /°° and A0 with / in the above. Thus, if A is an «-basic open

set in s (or Jx) and m ^ n then A is also an m-basic open set in s (or J°°). If IF is a

subset of s, let n: sx W-> W be the natural projection onto W and for «>0, let

7rn be defined on W as follows. For z = (zx, z2,...) e W, let nn(z) = (zx,..., zn,

0, 0,...). Note that in general rrn does not map into W but in our applications it

usually does. Also, if Tis a space and/": W-+ Tis a function, define/*: sx W -» Y

by/*=>.
Definition. Let W be an open subset of s and let {G¡} be a star finite collection

of w,-basic open sets in s (that is, for each /', G¡ is »¡¡-basic) whose union is W. For

each xeW, let

mx = minimum {«í¡ : x e Gf}.

Let Y be a topological space. A map, i.e. continuous function,/: W-*■ Y is a

local product map of W with respect to the G¡ and «î; if/(x)=/(7rmjc(x)) for each

xeW. If, additionally, F=[l, co) and/(x) 2: m* for each xeW, then/is a local

product indicator map of W with respect to the G¡ and m¡.

A special case of Lemma B. We introduce, in a very special case, some of the

procedures and notation to be used later. We shall assume the notation and

conventions already introduced. For this special case of Lemma B we shall assume

that for some «>0, (1) the open sets U and W are «-basic open sets in s, (2) V is

the closure of an «-basic open set in s, and (3) r0(x)= 1 for each x e U. Observe

that condition (3) implies that íx'o U=s x U. In the general case we shall not have

this obvious product structure with respect to U, W, and I7 and will have to identify

suitable local product structures with respect to these sets and /"¿^(O). Now,

consider the space X™ of points pi = (y\, z{i¡X), ziif2),...) that have been relabeled

(x0, xx, x2,...). If the procedure to be described for interchanging coordinates in

X™ leaves the xx,...,xn coordinates'of points in X™ fixed, then the induced

function will carry each point of s x U to a point of sx U.

The desired homeomorphism 77 of sx A onto sxrU will be expressed in terms

of a map « of Xq x Ix {«} into XÔ (with {«} a single point set for our special case).

The map « is to be an isotopy such that for x = (x0, xx,...) e Xq we have h(x, 0, «)

=x and

h(x, 1, «) = (0, xx,..., xn, —x0, —xn+x, — xn+2,...).

To finish the description of « we first describe a map «' of XÔ x [0, 1) x{«} into

Xq and then modify «' so as to produce «. Let h'(x, Q,n) = x and for each integer

/>0, let

« (x, 1—2   , n) = (xn+i, xx,..., xn, — x0, —xn+x,..., —xn+i-x, xn+i+x,...).
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Note that for k=l, 2,..., n, n + i+l, n + i + 2,..., the k coordinate is fixed. In

order to define A' it is merely necessary to "fill in the gaps", for the various i, for

/ between 1—2"' and 1-2"'"1. Note that the coordinate formulas for

A'(x, 1-2-', n) and A'(x, 1 -2"'"1, n) differ only in the original Oth and (n + i+ l)th

places. In these two places we have xn+i and xn+(+1 in the first case and xn+i+1

and —xn+i in the second case. Thus we may "rotate" the coordinate space

^ox^n+i+i to change these two coordinates as required. Technically, since

^ox ¿"n+i+i is an open square, we first contract the square onto the circular disc

Xo + xl+i+x < 1, rotate the disc clockwise by a quarter turn and then expand it to

the open square. For each /e[l-2"', 1-2"'"1], the 0th and (« + z'+l)th co-

ordinates of A'(x, t,n) are to be the induced combination of xi+1 and xn+i+x

obtained by linearly identifying / with the appropriate stage of the rotation. For

/ e [1—2"', 1—2"'_1] all other coordinates are those of A'(x, 1— 2"', n).

Finally to obtain A from A' for 0< /< 1 we scale down the 0th coordinate by a

factor of (1-/). That is, define ft: Xg xI-> X? by p(x, t) = ([l-t]x0, xu ...)

and then define A by A(x, /, n)=p(h'(x, t, ri), /). Such an A is clearly continuous.

With A defined we can now define //. First, let <f> be a map of U onto 7 such that

<p(U\W) = 0, (p(V)= 1, and <f>(z) = <f>(rrn(z)) for each z e U. The last condition makes

<f> a special kind of product map and such a <p may be defined by first defining a map

</>' on rrn(U) such that f (7r„(z))=0 for z e U\W and <f>'(7rn(z))= 1 for zeV. Then

define <j> by <j> = <t>'Vn.

We now define H: sxU-^-sxU as follows. For p = (yx,y2,..., zx, z2,...)

esxU, recall that p' = (y¡, z(ijl), z(i,2),...). Let [H(p)]' = h(p', fa(p), ri). It is easy

to verify that the map H is a homeomorphism of s x U onto the variable product

sxrU where r=l—</> and furthermore H\sx(U\W) is the identity.

4. Lemma B : The general case. For the proof of Lemma B in the general case

the sets U, V, and W need not be as nice as those used above. In particular, the

sets U and W might be infinite unions of sets of the form of U in the special case

where the values of n increase without bound. Furthermore the closed set V

need not have any obvious product structure. Thus, instead of having a fixed n we

have to introduce a new variable into our isotopy function A which will allow us to

pick out an n for a particular local product structure and to continuously vary this

value as the local product structure changes. Hence, we want to define a map

A: X0x'xlx[l,oo)-+X0"

such that for each integer n e [1, oo) and each x=(x0, xx,...) e XÔ, as / varies

from 0 to 1, A(x, /, ri) goes through the same motion as described in the special

case above taking x at time /= 1 — 2"' to the point

(2    Xn + (, Xx, . . ., Xn, —Xo, —Xn+j, . . .,  —Xn + j_i, Xn + j+i, . . .)

and to (0, xx,..., xn, —x0, —xn+1,...) at /=1. Also we specify that for any

n á u < n +1 and any tel, h(x, t, u) has the same xx to x„ coordinates as x and that
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the coordinate in the 0th place has been shrunk by a factor of 1 — t. Finally, for

« to be continuous at t= 1 we specify for n^u<n+ 1 that h(x, 1, u) is the appro-

priate intermediate value between h(x, 1,«) and h(x, 1,«+1). These two points

differ only in the («+ l)th and (« + 2)th coordinate places. In these places we have

— x0 and — xn+x in the first case and xn+x and — x0 in the second case and for the

intermediate value u we take the appropriate "rotation" on these two coordinates

leaving all other coordinates the same.

In the rest of this section we will prove Lemma B except for the proofs of

Lemmas C, E, and F. The proof of Lemma C will be postponed to §6 and amounts

to the construction of the map « described above. Lemmas E and F will be proved

in §5 and will assert the existence of appropriate local product maps </> and g that

will provide the values for the variables t and u, respectively, in the definition of the

homeomorphism 77. We are now ready to state

Lemma C. There exists a map

h: X0x'xlx[l,co)->X0X

such that if tel and u e [1, co) are fixed where n^u, then the map H: sxs^ sxs

defined by [H(p)]i=h(pi, t, u) for p esxs is a homeomorphism of sxs onto sxrs

where (1) r is the constant function l — t, (2) if t = Q, then H is the identity, and

(3)rr* = rr*H.

We will now modify Lemma C by using local product maps cf> and g in place of

the t and u respectively.

Lemma D. Let W be any open subset ofs, let sxro W be a variable product of s by

W where r0(x)>0for each xeW, and let {G¡} be a star finite collection ofmrbasic

open sets covering W. Let <f>: W-+1 and g: W-> [1, oo) be local product and local

product indicator maps of W, respectively, with respect to the G¡ and mi. There exists

an onto homeomorphism

H:sxToW-+sx'W

where (1) r = (l-fa)r0 and(2) 7/'|sxroç4-1(0) is the identity.

Proof. Clearly the map k from sxroWto sxWdefined by k(y, z) = (yröx(z), z)

is an onto homeomorphism. Let « be the map of Lemma C and define Hx: sxW

-+SXS by [Hx(p)]i = h(jpi, <f>*(p),g*(j>)) for />0 and p esx W. By condition (3)

of Lemma C together with the local product map properties with respect to the

G¡ and mt we observe (1) that Hx maps sxW onto sxriW where rx = l — <f> and

(2) that 4>*=<j>*Hx and g*=g*Hx. Property (1) follows since if pesxW where

núg*(p), then Hx carries the set (it*)'1tt*(j>) onto itself and (2) follows since

4>*{j>) = H{p) = ^n-"{p) = ^t{p) = ^nHx(p) = <i>*Hx(p) and similarly, for g*. We

now show that Hx has a continuous inverse.
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Define G from sxri W to jx W as follows. Let b esxri W and let H„: sx W

-> sxr»s be defined by

[Hb(p)]¡ = «(/?', </>*(¿>), g*(¿>))   for i>OandpesxW,

where r„ = 1 -<f>*(b). Let x=G(b) = Hç\b). Since ^>* = <f>*Hx and g*=g*Hx we

have AW = ¿>. Hence, it is clear that G is the inverse of Hx and G is continuous

since «, c6, and g are. Thus, Hx is a homeomorphism. We now observe that H

defined on sxro W by k~xHxk is a homeomorphism onto sxr W where r = (l — fa)r0

and that condition (2) of Lemma D is clear.    □

The next lemma will guarantee us that the proper kind of </> function can be

constructed.

Lemma E. Let U be an open subset of s and let Kc Wc U and A<^U where W

is open and V and A are closed relative to U. There exists a countable star finite

collection {Gt} ofmrbasic open sets in s whose union is W\A and a map <j>: U\A-^ I

such that <l>(V\A)=l, </>((U\W)\A) = 0 and fa W\A is a local product map of W\A

with respect to the G¡ and w¡.

Proof. (See §5.)

The next lemma asserts the existence of the proper kind of g function. Assume

the same hypothesis as in Lemma E.

Lemma F. The collections {G¡} a«c7 {m¡} of Lemma E can be chosen such that there

exists a local product indicator map g: W\A —> [1, co) with respect to the G¡ and mi

where g is unbounded near A, that is, for any x e A n Cl (W\A) and any «>0,

there is a neighborhood B(x) such that g\(W\A) n B(x)>n. (By Cl C we mean the

closure of C.)

Proof. (See §5.)

We now restate Lemma B and prove it on the basis of the apparatus we have

set up.

Lemma B. Let U be an open subset of s, let V<= W<= U where W is open and V is

closed in U, and let sx'o U be a variable product of s by U. There exists a homeo-

morphism H ofi sxra\] onto a variable product sxr U such that (1) r^r0, (2) r(V) = 0,

and (3) H\sxro[(U\W) u a-0-1(0)] is the identity.

Proof. By Lemmas E and F take a star finite collection {G4} of wrbasic open sets

and maps </> and g satisfying the conditions of the lemmas for the case where

A = rô\0).

Now let H' be the homeomorphism H of Lemma D defined with respect to

W\ro\0), fa and g. Define 77 onsxro U by extending 77' to the rest of sx'o U with

the identity function. Thus, if this extension is continuous, then 77 will be a homeo-

morphism of íx'oíí onto sxrU where r = (l—fa)r0 on W^ô^O) and r=r0 on

(U\W) u rô1^).   We   now   show  that  this   extension  is  continuous.   Since
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<p((U\W)\r0~1(Q)) = Q, by condition (2) of Lemma D the identity map on

jxro[(t/\H')\ro"1(0)] and H\sx(W\ro\0)) are compatible. To show that these

are compatible with the identity on ixro/-0_1(0) we will check the coordinate-wise

continuity of 77. The continuity of r0 gives the continuity of 77 on the first, or s,

coordinate and g becoming unbounded near r0~1(0) yields the continuity of 77 on

the second, or U, coordinate. Since conditions 1 and 2 of the statement of Lemma

B are clear the proof is complete.    □

5. Proofs of Lemmas E and F. Before proving Lemmas E and F we shall need

a definition and another lemma.

Let F be a basic open set in 5 and let n — min {z : F is /-basic}. Then E=EX x ■ ■ ■

xEnxTli>nJi> where each F¡ is an open subinterval of 7°. We say that E+ =

Ex x ■ ■ ■ x Enx \~[i>nJi is the «-basic open set in 7°° associated with F. Note that

E=E+ r\s.

Lemma G. Let U be an open subset of s and let F<= fF<= U and A^ U where W is

open and V and A are closed in U. There exist countable collections {W^ È 0 and

{Gi}i>o of open sets in U such that

(1) V<= W0, Cl lF¡c Wi+1<= Wfor each i^O and the union of the W-s is W.

(2) G = {GiSi > o is a star finite collection of basic open sets in s whose union is

W\A such that for each i, Cl G^ W\A and if for somej, Cl G¡ intersects (Cl Wf)\ Wt _ »,

then Cl G^Wi+x\Cl W,.a.

Proof. We assert the existence of the 1F¡ on the basis of standard elementary

techniques of point-set topology. If F is a subset of U, let B' denote B\A. Now, for

each x e (Cl Wx)' let Gx be a basic open set in s contained in W'2. For z > 1 and

for each xe(Cl WÙ'XWi-x let Gx be a basic open set in s contained in IF/+1\C1 IF,_2.

Let H be the collection of all the Gx. The space 5 is naturally imbedded in 7*.

For each Gx let Gx be the basic open set in J" associated with Gx and let W+ be

the union of all such G+. Note that W\A=W+ n s. Let

F = {B | B is basic open in 7™ and for some Gx e 77, Cl B c G£}

and let {A7j}¡e0 be a sequence of compact subsets of Jx such that for each z'^0,

MjCM°+1 and (Jigo Mi= W+. Cover Mx with elements of F whose closures are

contained in M2 and by compactness extract a finite subcover Fx. For z> 1, cover

Cl(Mi\Mi_x) with elements of F whose closures are contained in Af°+1\A/(_2 and

by compactness extract a finite subcover F¡. Thus, one can find a countable star

finite open cover G+ of IF+ with basic open sets in 7°°. Now let G be the collection

of intersections of the elements of G+ and s. Note that the closure of each element

of G is contained in W\A.    □

We are now ready for the

Proof of Lemma E. Let {Wt}t È 0 and {G^ > 0 be as in the conclusion of Lemma G.
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Let

Bx = {G¡ :ClGin V * 0}

and for k>l, let

Bk = {G, : A £ Uq-î A, and there exists GjeBk-x such that (Cl G¡) n (Cl Gy) ̂  0}.

For each G,, let «(G¡) = min {« : G( is «-basic} and m(G¡) = max {n(G¡) : Cl G¡

nClGJ7¿0}. Now, let {G2pj} be an enumeration of A2 and inductively pick

«j2i^«t(G2j() such that w2>i+iS«i2(. For k>2 let {Gkii} be an enumeration of Bk

and pick mkti^m(Gkii) such that mfc,<+i^mt>< and if Cl GM n Cl Gk_ijï* 0, then

mkA^mk_x¡j. Now, if Gt = GkJ for some & and/ let mi = mk,} and if G¡ £ Uj>i ^/>

let «jt = m(Gj).
Define ci to be 1 on the union of the closures of the elements of Bx and extend

ç4 to the union of the closures of the elements of A2 by induction on the / in {G21}.

The induction step is the same as the first step so we shall only give the induction

step. For i=k, use the Tietze extension theorem to extend c4 to Cl G2¡k such that if

xeCl G2k n Cl G3J, for some/ then <¡>(x)=\, and if xe G2,k then l/2^c4(x)á 1

and <j>(x)=fa-nm2 k(x)). This is possible since you first do it on the finite dimensional

cell ^m2,„(Cl G2<k) and then extend to all of Cl G2ik using the product structure.

Extend <f> to the rest of Uk>i,i>o Cl Gk¡¡ such that if x e Cl Gfcji n Cl Gk+Xyj, for

some/ then fa[x) = 2~k+1, and if xeClG*,,, then 2-k+1^(x)^2~k + 2 and

<t>(x)=farrmicl(x)). Let fa[x) = 0 for x e (U\A)\(jk>0,i>0 Cl Gw. Condition (2) of

Lemma G guarantees, except for the case when V= W= U, that </> is continuous.

If V— U, then <j> is the constant function 1. Thus, in any case we have satisfied the

conditions of the lemma.    □

Proof of Lemma F. In the proof of the last lemma we could just as well have'

chosen the mt such that for each />0, mi+x^ml and that the w¡ increase without

bound. Assume this had been done. We now construct a local product indicator,

map g: W\A -> [1, 00). For each />0, let C¡ denote the closure of G¡ in A0, re-

calling that G¡c: W\A<^ic/". As a matter of convenience we shall define g on the

union of the C¡ and then restrict the function to W\A which is the common part

of s and this union.

For each />0, let rt = maximum {m¡ : C¡ n C(^ 0}. Define g to be rx on Ci.

We now extend to the rest of the C¡ by induction. Assume that k> 1 is an integer

and that g has been extended to Uf= 11 C such that if x e Uf= 11 Q and m¡ =

min {m¡ : x e Ct, i = 1,..., k — 1}, then g(x) = g(jrm¡(x)) and g(x) ^ r¡ = m}. To extend

g to Ck we have three cases: (1) g has been defined on Ck, (2) g has been defined

for no point of Ck and (3) g has been defined for a proper nonvoid subset of Ck.

If (1), proceed to Ck+X. If (2), define g to be rk on Ck. If (3), proceed as follows. Let

Hk be the set of all C¡ that intersect Ck and such that g has been defined for no

point of this intersection. Define g to be rk on C¡ n Ck, for each Ct e Hk. Now take

the set of all C¡ not in Hk, i ̂  k, that intersect Ck and such that g has been defined
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for some point of this intersection and let Dk be the set of all intersections of Ck

with intersections of such fi. Each element B of Dk is the intersection of a certain

maximum number of the C¡; call this number the index of B. List the elements

of Dk as Bx,..., Bn, according to nonincreasing index. It should be noted that

Bn = Ck and that, from the definition of the mh each F¡ is «zfc-basic. We now extend

g inductively to the F¡. If g has been defined on all of Bx, proceed to B2. If g has

been defined for no point of Bx, let g be equal to rk on Bx, and if g has been defined

on a proper nonvoid subset of Bx, extend g as follows. Use the Tietze extension

theorem to extend g to rrmk(Bx) where the range of g is the interval bounded by the

maximum and minimum of the functional values assigned to points of Bx. Now,

extend g to the rest of Bx using the product structure. Extend g inductively to the

rest of the F( which, at the last stage, includes Ck. The induction step is the same

as the first step.

Thus, by induction we have extended g to the union of the fi. We now restrict

g to W\A. By construction, g is a local product indicator map with respect to the

Gj and «z¡ and since the closure in 5 of each G-¡ is contained in W\A and since the

«z¡ are unbounded, then g is unbounded near A.    fj

6. Proof of Lemma C.   The proof of Lemma C consists of constructing the map

A: X0xxIx[l,co)-^Xox'

with the required properties. In §3 we have already described h\XÔ xlx{ri} for

«2:1. Thus in defining A our problem will be that of extending the function we

already have to h\XôxIx [n—l,n] for «2:2. Let us denote this restriction of A

by hn. Following the pattern of §3 we shall first describe h'n and then modify it to

produce hn. According to our description of A' in §3 we have the following chart

for x=(x0, xx,...) e XÔ, t e I and u e [« — 1, «] where y denotes (xx,..., xn_x).

1/2 3/4 7/8

\xn+i,y, xn,   x0,

Xn+2, ■ • ■)

(Xn+2,y,Xn,      X0,

Xn+X, Xn+3, ■ ■ .)

\.Xn+3,y,Xn,     Xq,

Xn+1,     Xn + 2,Xn+±, . . .)

n-l
(xn,y,   xo,xn+x,

Xn+2, • ■ ■)

(xn+l,y,      Xq,      Xn,

•^n+2» Xn+3, ■ . .)

(.Xn + 2, y,     Xq,     Xn,

~Xn+X,Xn+3,Xn + ±, . . .)

Figure 1

We will describe three maps

(1) A;i0: X? x [0, 1/2] x [«-1, «] -> X?,

(2) h'n,x: X? x [1/2, 3/4]x [n-l, «] -> X? and

(3) A;>2: X? x [3/4, 7/8] x [«-1, «] -> X?,
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and then show how to appropriately modify h'n¡2 to form

h'ny.X0xx[l-2-i,l-2-i-1]x[n-l,n]^X0x'

for /> 3, where the h'nj patched together will yield h'„.

Description of h'n¡0. Let p'n be the homeomorphism that takes X0x Xnx Xn+X

onto the unit 3-ball Bn={(x0, xn, xn+x) : x2 + xl+x2+x< 1} by shrinking linearly

along radii. Let pn: X™ -> Xo be defined by pn = p'nxid where id is the identity

function of rif#o,n,n+i Xi- We now define a map

«;o:Anx[0, l/2]x[«-l,«]->An

as follows. Consider / and u to be elements of [0, 1 /2] and [« — 1, «] respectively.

For r=0 and n—l^u^n let hn¡0 be the identity. For u—n—l, as t goes from 0

to 1/2 let the x0 and xn coordinates be rotated (using sine and cosine functions)

so that (x0, xn, xn+x) is rotated to (xn, —x0, xn+x). For u=n, as t goes from 0 to

1/2 let the x0 and xn+x coordinates be rotated so that (x0, xn, xn+x) is rotated to

(-^n+l; xn, ~xo)-

Fill in the rest of the isotopy as follows. For « — 1 < u < « take a new axis xu

that is proportionately between xn and xn+x, see Figure 3, and then rotate xu and

Xo-

We will describe the resultant rotation for r= 1/2 and as u goes from «— 1 to «.

See Figure 2. This rotation is a double rotation, that is, starting with (xn, —x0,

Xn + 1

n-\

1/2

\Xo, *n> xn +1)

Figure 2

-x0

(■*n + l> -"ni  — x0)

xn*l

(xn, —x0, x„ + 1)

Figure 3
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xn+1), as xn+1 and xn are being rotated, so are -x0 and xn. Thus, (x„, — x0, xn+1)

ends up as (xn+1, xn, — x0). It should be noted that an explicit formula for h"n¡0

can be displayed as appropriate combinations of the sine and cosine functions.

Now, let ftn¡o = h'n¡0 x id where id is the identity function of rL^o.n.n+i %i- Then

h'n,o = pn~1nn.oPn-

Description of h'n¡x. Let a'n be the homeomorphism that takes X0x Xnx Xn+X

x Xn+2 onto the unit 4-ball

Cn — \(xo, xn, xn+i, xn+2) : Xo + xn+xn+1+xn+2 < 1}

by shrinking linearly along radii. Let an: X^ ->■ Xo be defined by on = o'nx id where

id is the identity function of rL#o,n,n+i,n+2 %t- We now define

A;,i:Cnx[l/2,3/4]x[«-l,«]-^Cn

as follows. For x=(x0, xn, xn+1, xn+2) e C„, let h"n<x(x, 1/2, «-l) = (xn, -x0, xn+1,

xn+2) and for /= 1/2 as u varies from «— 1 to n let (xn, — x0, xn+1, xn+2) go through

the double rotation to (xn+1, xn, —x0, xn+2) as described in the definition of A„>0

(applied to the first three coordinates of x, keeping the xn+2 coordinates fixed).

See Figure 4. For «=«—1 and as / goes from 1/2 to 3/4 let xn and xn+i be rotated

u= _4, + n + 2

n-l

1/2        t        3/4

(-^n + l) xn, ~x0, -vn+2)

-X0

*„ + ■

-*o

Oxn + 2

— xn + 1

(■*n + 2> *w ~x0, —-^n+l)

*n+l

(X„,  — X0, .Y„ + 1, X„+2)

Figure 4

(-»*il+l»        -^0.        Xn,Xn + 2)

such that (xn, — x0, xn+1, xn+2) is rotated to (xn+1, —x0, — xn, xn+2). We now

describe a rotation corresponding to the diagonal {(/, u) : 1/2^/^3/4, u——4t

+«+2} of [1/2, 3/4]x [«—1,«].  As (t,u), where u=—4t+n+2, varies from
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(1/2, «) to (3/4, «-1), the xn and — x0 coordinates are rotated so that (xn+x, xn,

— x0,xn+2) is rotated to (xn+x, —x0, — xn, xn+2). Note that the double rotation

corresponding to the path determined by l/2x [«— 1, «] is a combination of the

rotations corresponding to the path determined by [1/2, 3/4]x{«-l} and the

diagonal. Hence, the map «n>1 extends to the interior of the corresponding triangle.

For u = n as t varies from 1/2 to 3/4, rotate the xn+1 and xn+2 coordinates so that

(*n+i> xn, ~xo, ^1+2) rotates to (x„+2,xn, -x0, -xn+1). For r=3/4 as u varies

from «—1 to « we have a double rotation; — x0 and — xn are rotated and inde-

pendently but at the same time — xn+x and xn+2 are rotated so that (xn+x, —x0,

— xn, xn+2) is rotated to (xn+2, xn, — x0, — xn+x). Note, for the triangle above the

diagonal, that the rotations break up into pairs corresponding to Figure 5. Hence

(3,..,

we can extend «n>1 to this triangle and the definition of hn,i is complete. Now let

wn,i=«n,ixid  where id  is the  identity function  of TJi¿o,n,n+i,n+2 X¡-  Then

«ñ.l = <7,T1«n,iCTn.

Description of h'n,2. Let t„ be the homeomorphism of XQx Xnx Xn+Xx Xn+f¡

x Xn+3 onto

A*n = {(x0, xn, xn+x, xn+2, xn+3) : xn+xn+i < 1    and   Xo + xn+2 + xn+3 < 1}

by shrinking linearly along radii. Note that £>„ is homeomorphic to the cartesian

product of the 2-ball En={(xn, xn+x) : xn+x2.+ x< 1} and the 3-ball

An = \(x0, xn+2, xn+3) • ^o + ^n+2+ ^n + 3  <   !}•

At our convenience we may think of A»n as it is defined or as AnxAn.

Let Tn: ^0°° -*■ Xo be defined by Tn=rnxid where id is the identity function on

rL*o.n,n+i,n+2,n+3 X- We now define a map

«„,2:Anx[3/4,7/8]x[«-l,«]-^An

Figure 5
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as follows. For x=(x0, xn, xn+1, xn+2, xn+3) e Dn, let

hn,2(x, 3/4, u) — (xn+1, x0, xn, xn+2) xn+3) — (( x0, — x„), (xn+x, xn+2, xn>3))

and for /=3/4, as u varies from « — 1 to n, take the double rotation described in

the definition of h'n¡x. That is (xn+1, — x0, — xn, xn+2, xn+3) is rotated to

(xn+2, x„, —x0, — xn+1, xn+3). Note that the rotations are done independently in

the 2-ball and 3-ball respectively, and in the 3-ball the rotation is done only in the

xn+1, xn+2-plane leaving the xn+3 coordinate fixed. We now describe the rotations

on the 2-ball. If 3/4^/^7/8, as u varies from «—1 to « rotate (—x0, — xn) to

(xn, — x0). That is, for each value of /, as u varies from n—I ton we have the same

rotation. We next describe the rotations on the 3-ball. For « = «—1, as / varies

from 3/4 to 7/8 we rotate (xn+1, xn+2, xn+3) to (xn+2, -xn+1, xn+3). Note that

this is the same rotation we have for / = 3/4 as u varies from «—1 to n. We now

fill in the other two legs of the rectangle. That is, for u=n, as / varies from 3/4 to

7/8 we have (xn+2, -xn+1, xn+3) rotated to (xn+3, -xn+1, -xn+2) and for Z = 3/4,

as u varies from n — 1 to « we have the same rotation. Since both paths from

(3/4, «— 1) to (7/8, «) induce the same rotations, the map h'ñ,2 is extendible to the

interior of the rectangle.

Let A\j2=Añ,2xid where id is the identity function on rii#o,n,n+i,n+2,n+3 -^i-

Then A;,2 = Tn-1Anilrn.

We shall now describe what we mean by appropriately modified copies of Añ>2

for the subintervals [1-2"', 1-2"'"1], i^3. We describe the required rotation.

For the «th and (« + l)th coordinate places we want (—x0, — xn) rotated to (xn, — x0)

as u varies from «—1 to n. Otherwise we want to act on the Oth, (n + /)th and

(« + /+ l)th coordinate places where the points

\Xn + i, ~~Xn + i-X, Xn+¡+i)      (Xn + ¡+i,  —Xn+j_i,  —Xn + ()

(Xn + i-1, Xn + i, Xn + i+x)     (Xn + ¡, ~Xn+i-X, Xn + i+x)
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correspond respectively to the lattice points of [1 —2_i, 1—2~i_1]x [« —1, «].

These rotations for the case /=2 are precisely what «n,2 was designed to do.

Indeed, in defining «n,2 we could just as well have defined, for i>2,

«;,i:A'0OTx[l-2-i, l-2-i-1]x[«-l,«]->JT0to.

It should be noted for t = 1 -2"' (/S3), x e Xg and «-1 Su^n, that «nii_i(;t, t, u)

=h'n,i(x, t, u).

The map hn. Let

«n:ATx[0, l)x[#!-l,fi]->.*o"

be the map obtained by patching together the h'nJ fory'^O. To scale down the Oth

coordinate we define p.: X™ x/^ A'" as follows. For x = (x0, xx,...) e X™ and

tel, let p.(x, t) = ([l — t]x0, xx,...). From h'n we define

rt„:X000x7x[«-l,«]-^Aroco

for «>1 as follows. For xeX™, t e [0, 1), and ue[n—l,n], let hn(x,t,u)

=p(h'n(x, t, u), t) and for t= 1, as u varies from «—1 to « let (0, xit..., xB_j.,

-x0, -xn, -xn+x,...) be rotated to (0, xx,..., xB_1( x„ -x0, -xn+x,...). That

is, in the «th and («+l)fh coordinate places we have (—x0,—xn) rotated to (xn,—x0)

leaving the other coordinates fixed. This yields a continuous «n since in the defini-

tion of h'n,i, for i> 1, we used this same rotation on the «th and (« f l)th coordinate

places together with a rotation involving the 0th, (n + /)th, and (« + /+l)th co-

ordinates. The 1 -1 factor in the 0th coordinate place and the fact that / -> oo as

t -*■ 1 imply continuity for «n.

Thus, hn is continuous and forxe Xô, tel, and for«>2 we have «„^(x, t, n— 1)

= «„(*, t, n— 1). Hence we may patch the «„ together to form

h:XQxxIx[l,oo)^X£.

It is clear that if / e 7 and u e [1, co) where n^u, then «0: Xô —> XÔ defined by

h0(x) = h(x, t, u) is a homeomorphism of XÔ onto À^ x Xx such that if r = 0, then

«o is the identity and that the xx to x„ coordinates of a point x e Xq remain fixed.

Hence, the map H of Lemma C is defined coordinate-wise in terms of various

copies of «o considered with respect to disjoint sets of coordinates and thus inherits

the required properties.    □

Addendum. In [7] David W. Henderson used Theorem I of this paper to prove

that any A-manifold can be embedded as an open subset of s. With the aid of this

result we obtain the following stronger version of Theorem I.

Theorem. Let M be any F-manifold and let U be any open cover of M. There

exists a homeomorphism h: sxM^> M such that for each (x, y)esxM, there

exists ue U such that y and h(x, y) are elements of u.

Proof. By [7] let / be an open embedding of M into s. Let G be a countable

star-finite collection of basic open sets in s whose union is f(M) such that G
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refines/(U). Let g:f(M) -> [1, co] be a local product indicator map off(M) with

respect to G. Consider the map 77 of Lemma D defined with respect to r0=l,

<f> = l, and g. It follows that 77 is a homeomorphism of s xf(M) onto f(M) such

that for each (x, z)es xf(M) we have 77(x, z) belonging to each element of G

that also contains z. Thus A: sxM-> M defined by A =/"* ° 77° (id xf) is the

required homeomorphism.
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