Piercing points of crumpled cubes
HTML articles powered by AMS MathViewer
- by L. D. Loveland
- Trans. Amer. Math. Soc. 143 (1969), 145-152
- DOI: https://doi.org/10.1090/S0002-9947-1969-0247619-6
- PDF | Request permission
References
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465–483. MR 87090
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294–305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583–590. MR 146811, DOI 10.2307/2372864
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33–45. MR 160194
- R. H. Bing, Improving the side approximation theorem, Trans. Amer. Math. Soc. 116 (1965), 511–525. MR 192479, DOI 10.1090/S0002-9947-1965-0192479-1
- Morton Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812–814. MR 126835, DOI 10.1090/S0002-9939-1961-0126835-6
- C. E. Burgess, Criteria for a $2$-sphere in $S^{3}$ to be tame modulo two points, Michigan Math. J. 14 (1967), 321–330. MR 216481
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI 10.2307/1969408
- P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in $E^{3}$, Proc. Amer. Math. Soc. 11 (1960), 832–836. MR 126839, DOI 10.1090/S0002-9939-1960-0126839-2
- David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459–476. MR 160193, DOI 10.2307/2373136 N. Hosay, The sum of a real cube and a crumpled cube is ${S^3}$, Notices Amer. Math. Soc. 10 (1963), 668.
- Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534–549. MR 178460, DOI 10.1090/S0002-9947-1965-0178460-7
- F. M. Lister, Simplifying intersections of disks in Bing’s side approximation theorem, Pacific J. Math. 22 (1967), 281–295. MR 216484
- L. D. Loveland, Tame subsets of spheres in $E^{3}$, Pacific J. Math. 19 (1966), 489–517. MR 225309
- L. D. Loveland, Wild points of cellular subsets of $2$-spheres in $S^{3}$, Michigan Math. J. 14 (1967), 427–431. MR 221485
- L. D. Loveland, Sufficient conditions for a closed set to lie on the boundary of a $3$-cell, Proc. Amer. Math. Soc. 19 (1968), 649–652. MR 227961, DOI 10.1090/S0002-9939-1968-0227961-X
- Joseph Martin, Tame arcs on disks, Proc. Amer. Math. Soc. 16 (1965), 131–133. MR 175103, DOI 10.1090/S0002-9939-1965-0175103-9
- Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147–151. MR 190914
- D. R. McMillan Jr., Some topological properties of piercing points, Pacific J. Math. 22 (1967), 313–322. MR 216486
- D. R. McMillan Jr., Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153–157. MR 220266, DOI 10.1090/S0002-9939-1968-0220266-2
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
- D. G. Stewart, Cellular subsets of the $3$-sphere, Trans. Amer. Math. Soc. 114 (1965), 10–22. MR 173244, DOI 10.1090/S0002-9947-1965-0173244-8
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 143 (1969), 145-152
- MSC: Primary 54.78; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0247619-6
- MathSciNet review: 0247619