PIERCING POINTS OF CRUMPLED CUBES

BY

L. D. LOVELAND

McMillan [20] proved that a free 2-sphere in S^3 can be pierced by a tame arc at each of its points. Since each complementary domain of a free 2-sphere is an open 3-cell [22], it seems natural to attempt to prove some theorem analogous to McMillan’s with this weaker hypothesis. We show that a crumpled cube C in S^3 has at most one nonpiercing point if $\text{Int} \ C$ is an open 3-cell. A crumpled cube C is the union of a 2-sphere and one of its complementary domains in S^3, and a point p of $\text{Bd} \ C$ is a piercing point of C if there is a homeomorphism h of C into S^3 such that $h(\text{Bd} \ C)$ can be pierced by a tame arc at $h(p)$. It follows that a 2-sphere S in S^3 has at most two points where S cannot be pierced by a tame arc if each component of $S^3 - S$ is an open 3-cell (Corollary 3). McMillan [21] obtained the same result independently using an entirely different approach. Our proof follows from Lemmas 1–3 and the main result of [8].

Other results follow from the methods used in the proofs of Lemmas 1–3. For example, if a Cantor set W lies in a 2-sphere S in S^3 such that each component of $S^3 - S$ is an open 3-cell, then W is tame (Theorem 3). Thus each Cantor set on a free 2-sphere is tame. We also show that a continuum F is cellular if F lies in the boundary S of a cellular 3-cell and F does not separate S (Theorem 4).

We also obtain two characterizations of piercing points of crumpled cubes. One that is useful in this paper is that a point p in the boundary S of a crumpled cube C is a piercing point of C if and only if Property $(\ast, p, \text{Int} \ C)$ is satisfied (Theorem 2). If F is a closed subset of S, $(\ast, F, \text{Int} \ C)$ is defined to mean that Bing’s Side Approximation Theorem [6] can be applied relative to S and $\text{Int} \ C$ in such a way that the intersection with S of the polyhedral approximation to S lies in the union of a finite set of mutually disjoint small disks in $S - F$. A precise definition can be found in [11] or [15]. The other characterization of piercing points (see Corollary 4) follows as a consequence of this one and results from [17].

The references should be consulted for needed definitions.

I. Piercing points of the closure of an open 3-cell.

Lemma 1. If $\epsilon > 0$ and p and q are points in the boundary S of a crumpled cube C in S^3, then there exist a crumpled cube M, an ϵ-homeomorphism h taking S onto $\text{Bd} \ M$, and a Sierpinski curve X such that

1. p and q are inaccessible points of X,
2. $X \subset S \cap \text{Bd} \ M$,
(3) $\text{Bd } M$ is locally tame modulo $\{p, q\}$.
(4) M lies in an ε-neighborhood of C.
(5) h is the identity on X, and
(6) each component of $S - X$ has diameter less than ε.

Proof. We shall use the technique introduced by Martin [18]. Let D be a disk on S such that $p \in \text{Int } D$, $q \in S - D$, and $\text{Bd } D$ is tame [4], and let J_1, J_2, \ldots be a sequence of tame simple closed curves in D such that $\text{Bd } J_1 = \text{Bd } D$ and if D_1, D_2, \ldots are the disks on D bounded by J_1, J_2, \ldots, respectively, then $D_{i+1} \subseteq D_i$ and $p = \bigcap D_i$. Using repeatedly the results from [6] and [11] together with the techniques of [4], we obtain a collection of tame annuli A_1, A_2, \ldots such that

$$\text{Bd } A_i = \text{Bd } D_i \cup \text{Bd } D_{i+1},$$

$A_i \cap D_i$ contains a Sierpinski curve X_i in $D_i - \text{Int } D_{i+1}$,

$A_i \cap \text{Int } A_i = \emptyset$ if $i \neq j$,

$\text{Cl } \left(\bigcup A_i \right)$ is a disk E with boundary J_i,

$\text{Bd } M = (S - D) \cup E$, and each component of $A_i - X_i$ has diameter less than ε/i.

The procedure for obtaining the annuli A_i is given roughly by Martin in [18], so we do not pursue the details.

The same procedure as outlined above relative to q and the disk $S - \text{Int } D$ yields a sequence of Sierpinski curves Y_i such that $\{p, q\} \cup \left(\bigcup X_i \right) \cup \left(\bigcup Y_i \right)$ is the Sierpinski curve X required in Lemma 1.

Lemma 2. If the closure of $S^3 - C$ is a 3-cell, then, in addition to the conditions in Lemma 1, M and X can be selected such that

(7) $C \subseteq M$,

(8) $\text{Bd } M \cap S = X$, and

(9) the closure of each component of $M - C$ is a 3-cell.

Proof. We use Lemma 1 to obtain a Sierpinski curve X such that X contains p and q inaccessibly, X is locally tame modulo $\{p, q\}$, and each component of $S - X$ is small. Since S is tame from $S^3 - C$ we can obtain a 2-sphere $\text{Bd } M$ by pushing each component of $S - X$ slightly into $S^3 - C$. Since $\text{Bd } M$ is locally tame modulo X, we see that $\text{Bd } M$ is locally tame modulo $\{p, q\}$ [5]. If we identify M as the crumpled cube containing C and bounded by $\text{Bd } M$, conditions (7) and (8) follow. If Z is the closure of a component of $M - C$, then $\text{Bd } Z$ is a 2-sphere that is locally tame from $\text{Int } Z$ modulo a tame simple closed curve in X. It follows that $\text{Bd } Z$ is tame from $\text{Int } Z$ (see [11, Theorem 2] and [15, Theorem 14]), so Z is a 3-cell.

Lemma 3. Suppose K is a crumpled cube in S^3 such that $S^3 - K$ is an open 3-cell. If K_1, K_2, \ldots is a sequence of mutually disjoint 3-cells in K such that, for each i, $K_i \cap \text{Bd } K$ is a disk D_i, then $S^3 - \text{Cl } \left(K - \bigcup_{i=1}^n K_i \right)$ is an open 3-cell.

Proof. For each integer n we let $M_n = \text{Cl } \left(K - \bigcup_{i=1}^n K_i \right)$ and $V_n = S^3 - M_n$. The theorem will follow from [7] once we show that each V_n is an open 3-cell or equivalently that each M_n is cellular. In the remainder of the proof we show that
1969]

PIERCING POINTS OF CRUMPLED CUBES

147

$M = M_1$ is cellular. Since the K_i are disjoint the same procedure can be used inductively to show the cellularity of each M_n.

Let $\alpha > 0$ and let A be a polyhedral arc in $S^3 - K_1$ from a point k in $\text{Int} \ K - K_i$ to a point m in $S^3 - K$. Since K_1 is a 3-cell, there exist disks D and E such that $D \subset \text{Int} \ D_1$, $\text{Bd} \ D$ is tame, $\text{Bd} \ D = \text{Bd} \ E$, $E - \text{Bd} \ E$ lies in $\text{Int} \ K_1$, and E is homeomorphically within $\alpha/2$ of $\text{Bd} \ K_1 - \text{Int} \ D_1$. Using Bing's Side Approximation Theorem [6] relative to the open set $\text{Bd} \ K - D$ in $\text{Bd} \ K$, we obtain an annulus F such that $\text{Bd} \ D \subset \text{Bd} \ F$, $\text{Bd} \ F - \text{Bd} \ D \subset S^3 - K$, $F \cap (A \cup M \cup \text{Int} \ E \cup \text{Int} \ D) = \varnothing$, F lies within $\alpha/2$ of M, and F is locally polyhedral modulo $\text{Bd} \ D$. Without loss in generality we may assume that $G = F \cup E$ is a polyhedral disk near M [10].

Since $S^3 - K$ is an open 3-cell, there is a 2-sphere R within α of $\text{Bd} \ K$ such that R separates the two boundary components of F, R separates k from m, and R lies in $S^3 - K$. We assume that R is polyhedral [1] and that F and R are in general position. Now we assume that A and R are in general position (i.e., $R \cap A$ consists of a finite number of points where A pierces R), and we choose a component T of $R - F$ such that $T \cap A$ consists of an odd number of points. Then T is a disk with holes lying within α of M. We fill these holes with disks near G to obtain a 2-sphere W that lies within α of M. Since $A \cap W = A \cap T$, it follows that W separates k from m. This means that W bounds a 3-cell X such that $M = \text{Int} \ X$ and X lies within α of M.

THEOREM 1. If C is a crumpled cube in S^3 such that $\text{Int} \ C$ is an open 3-cell, then C has at most one nonpiercing point.

Proof. Since there is a homeomorphism h of C into S^3 such that the closure of $S^3 - h(C)$ is a 3-cell [12], [13] and p is a piercing point of C if and only if p is a piercing point of $h(C)$, we assume without loss in generality that the closure of $S^3 - C$ is a 3-cell K. Let p and q be two points of $\text{Bd} \ C$. We shall show that one of these two points must be a piercing point of C. It follows from Lemma 2 that there exists a 2-sphere S', a Sierpinski curve X, and a crumpled cube M such that $M \subset K$, $\text{Bd} \ M = S'$, p and q are inaccessible points of X, $S' \cap \text{Bd} \ C = X$, S' is locally tame modulo $\{p, q\}$, and the closure of each component of $K - M$ is a 3-cell. From Lemma 3 we see that $S^3 - M$ is an open 3-cell. Since K is a 3-cell it follows that $\text{Bd} \ M$ is locally tame from $\text{Int} \ M$ at both p and q (in fact, M is a 3-cell). For more detail, see the proof of Lemma 5 to follow.

It follows from [8, Theorem 1] that $\text{Bd} \ M$ is also locally tame from $S^3 - M$ at one of the points p and q, say p. Then p lies in a tame arc in X, so p is a point at which $\text{Bd} \ C$ can be pierced by a tame arc [11]. This means that p is a piercing point of C.

Property $(\ast, p, \text{Int} \ C)$, which is used in the following theorem, was defined roughly in the introduction and can be found in either [11] or [15].

THEOREM 2. A point p in the boundary of a crumpled cube C is a piercing point of C if and only if $(\ast, p, \text{Int} \ C)$ is satisfied.
Proof. If \(p \) is a piercing point of \(C \), there exists a homeomorphism \(h \) of \(C \) into \(S^3 \) such that \(h(S) \) can be pierced by a tame arc at \(h(p) \). According to Gillman [11] this means that \(h(p) \) lies in a tame arc \(A \) in \(h(S) \). Furthermore Gillman [11] proved that \((*, A, h(\text{Int } C))\) is satisfied since \(A \) is tame. Lister [14] showed that \((*, h^{-1}(A), \text{Int } C)\) follows since \(h \) is a homeomorphism. Of course this implies \((*, p, \text{Int } C)\).

The other half of the proof of Theorem 2 is merely a rearrangement of the same ideas.

The following result is a consequence of Theorem 2 and a result by Martin [19].

Corollary 1. If \(p \) is a point in a 2-sphere \(S \) in \(S^3 \) and \(U \) and \(V \) are the components of \(S^3 - S \), then either \((*, p, U)\) or \((*, p, V)\) is satisfied.

Corollary 2. If \(C \) and \(L \) are the crumpled cubes bounded by a 2-sphere \(S \) in \(S^3 \) and a point \(p \in S \) is a piercing point of both \(C \) and \(L \), then \(S \) can be pierced by a tame arc at \(p \).

Proof. It follows from Theorem 2 that both \((*, p, \text{Int } C)\) and \((*, p, \text{Int } L)\) are satisfied. This means that \(S \) can be pierced by a tame arc at \(p \) [11].

Corollary 3. If each complementary domain of a 2-sphere \(S \) in \(S^3 \) is an open 3-cell, then \(S \) contains two points \(p \) and \(q \) such that \(S \) can be pierced by a tame arc at each point of \(S - \{p, q\} \).

Corollary 4. A point \(p \) in the boundary of a crumpled cube \(C \) is a piercing point of \(C \) if and only if \(p \) lies in an arc \(A \) in \(\text{Bd } C \) such that for each \(\varepsilon > 0 \) there is a positive number \(\delta \) such that each unknotted simple closed curve that lies in \(\text{Int } C \) and has diameter less than \(\delta \) can be shrunk to a point in an \(\varepsilon \)-subset of \(S^3 - A \).

Proof. From Theorem 2 we see that \((*, p, \text{Int } C)\) is satisfied if \(p \) is a piercing point of \(C \). Then \(p \) lies in an arc \(A \) satisfying the conditions of Corollary 4 (see Theorem 1 in [17] and the remark on p. 511 in [15]).

If there exists an arc \(A \) as in the statement of Theorem 2, then \((*, A, \text{Int } C)\) follows (see the remark prior to the statement of Theorem 2 in [17]). Thus it follows from Theorem 2 that \(p \) is a piercing point of \(C \).

II. Certain Cantor sets are tame. Using the methods of §I, we show that Cantor set \(W \) is tame if \(W \) lies in a 2-sphere \(S \) such that each component of \(S^3 - S \) is an open 3-cell.

Lemma 4. If \(\varepsilon > 0 \) and \(W \) is a closed 0-dimensional subset of a 2-sphere \(S \) in \(S^3 \), then there exists a Sierpinski curve \(X \) in \(S \) such that

1. \(W \) lies inaccessibly in \(X \),
2. \(X \) is locally tame modulo \(W \), and
3. each component of \(S - X \) has diameter less than \(\varepsilon \).

Proof. The proof is much the same as that given for Lemma 1. We let \(B_1 \) be a finite collection of mutually disjoint disks \(D_{11}, D_{12}, \ldots, D_{1n_1} \) in \(S \) such that each
Bd D_{1j} is tame, $W \subseteq \bigcap \text{Int } D_{1j}$, and diam $D_{1j} < 1$. We inductively define, for each positive integer n, a similar finite collection B_n of disjoint disks each of diameter less than $1/n$. If we denote the union of the disks in B_n by B_n^*, then we insist that B_n^* is in the interior of B_{n-1}^* and that each point of W is a component of $\bigcap_{n=1}^\infty B_n^*$.

Now we apply the procedure outlined in the proof of Lemma 1. First we obtain a tame Sierpinski curve X_1 in $S - \bigcup \text{Int } D_{1i}$, such that each component of $S - X_1$ has diameter less than ε. Then X_2 is a finite collection of tame Sierpinski curves each in the closure of a component of $B_n^* - B_{n+1}^*$ and having small holes. This process is continued so that, for each n, we obtain a finite collection X_n of tame Sierpinski curves in X_n by X_n^*, then $(\bigcup X_n^*) \cup W$ is the desired Sierpinski curve X.

Lemma 5. If W is a closed 0-dimensional subset of the boundary S of a cellular 3-cell C in S^3 and X is a Sierpinski curve in S containing W such that X is locally tame modulo W, then there exists a cellular 3-cell M such that

1. Bd M is locally tame modulo a point of W,
2. $X = \text{Bd } M \cap S$, and
3. $M \subseteq C$.

Proof. The proof of Lemma 2 shows how to construct a crumpled cube M satisfying conditions (1) through (3), and it follows from Lemma 3 that M is cellular. Since $M \subseteq C$ and Int C is 1-ULC it is not difficult to show that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that each simple closed curve lying in Int M and having diameter less than δ can be shrunk to a point in an ε-subset of Int C. This implies Property $(A, X, \text{Int } M)$, defined in [15], which is equivalent to $(\ast, X, \text{Int } M)$ [15, Theorems 8–10]. Hence M is a 3-cell [15, Theorem 14]. It follows from [8] that Bd M is locally tame modulo a point of W.

Theorem 3. If W is a closed 0-dimensional subset of a 2-sphere S in S^3 and each component of $S^3 - S$ is an open 3-cell, then W is tame.

Proof. Let U and V be the components of $S^3 - S$, and let X be a Sierpinski curve satisfying the conditions of Lemma 4 relative to some $\varepsilon > 0$. There is a homeomorphism h of $S \cup V$ into S^3 such that $S^3 - h(V)$ is a cellular 3-cell [12], [13]. Since $h(X)$ is locally tame modulo $h(W)$ it follows from Lemma 5 that $h(X)$ is locally tame modulo a point $h(p) \in h(W)$. Each Sierpinski curve $h(Y)$ in $h(X) - h(p)$ satisfies $(\ast, h(Y), h(V))$ since $h(Y)$ is tame [11], so it follows from a result by Lister [14] that (\ast, Y, V) is satisfied.

Applying the same argument, where f is a homeomorphism of $S \cup U$ into S^3, we obtain a point $q \in W$ such that each Sierpinski curve Y in $X - \{p, q\}$ satisfies both (\ast, Y, V) and (\ast, Y, U). Then Y is tame [15]. This means that X is locally tame modulo two points, so W is locally tame modulo two points. A theorem proven by Bing [3] shows W to be tame.
Corollary 5. If a closed 0-dimensional set \(W \) lies in the interior of a cellular disk \(D \) in \(S^3 \), then \(W \) is tame.

Proof. For each point \(p \in W \) there exists a disk \(D_p \) in \(\text{Int} \ D \) and a 2-sphere \(S_p \) such that \(p \in \text{Int} \ D_p \subset D_p \subset S_p \) and \(S_p \) is locally tame modulo \(D_p \) [2, Theorem 5]. It follows from the fact that \(D_p \) is cellular [21] that each component of \(S^3 - S_p \) is an open 3-cell [23]. This means that \(W \) is locally tame (Theorem 3), so \(W \) is tame [3].

Corollary 6. If \(W \) is a closed 0-dimensional subset of a free 2-sphere \(S \) in \(S^3 \), then \(W \) lies in a tame Sierpinski curve on \(S \).

Proof. The proof of Theorem 3 shows that \(W \) lies in a Sierpinski curve \(X \) in \(S \) such that \(X \) is locally tame modulo two points (each component of a free 2-sphere must be an open 3-cell [22]). Since these two points lie in tame arcs in \(S \) (see [20, Theorem 5] and [11, Theorem 6]), they each lie in tame arcs in \(X \) [11, Lemma 6.1]. Thus \(X \) is tame [10].

III. Other related results.

Lemma 6. If \(\varepsilon > 0 \) and \(F \) is a continuum in the boundary \(S \) of a crumpled cube \(C \) in \(S^3 \) such that \(F \) does not separate \(S \), then there exists a null sequence of mutually disjoint \(\varepsilon \)-disks \(\{E_i\} \) in \(S - F \) and a crumpled cube \(M \) such that

1. \(F \cup (S - \bigcup \text{Int} \ E_i) \subset \text{Bd} \ M \),
2. \(\text{Bd} \ M \) is locally tame modulo \(F \), and
3. \(M \) lies in an \(\varepsilon \)-neighborhood of \(C \).

Proof. Since \(F \) does not separate \(S \) there is a sequence \(\{D_i\} \) of disks on \(S \) such that \(F = \bigcap D_i \), \(\text{Bd} \ D_i \) is tame, and \(D_{i+1} \subset \text{Int} \ D_i \). Now we follow the procedure outlined in the proof of Lemma 1.

Lemma 7. If \(\varepsilon > 0 \) and \(F \) is a continuum in the boundary \(S \) of a cellular 3-cell \(C \) in \(S^3 \) such that \(F \) does not separate \(S \), then there exists a cellular 3-cell \(M \) satisfying all the conditions of Lemma 6 and such that \(M \subset C \).

Proof. We use Lemma 6 to obtain the disks \(E_i \) in \(S - F \). Then the construction of \(M \) is indicated in the proofs of Lemmas 2 and 3 where each \(E_i \) is replaced with a tame disk in \(C \). Since \(M \subset C \) and \(C \) is a 3-cell it is easy to see that \(M \) is also a 3-cell (see the proof of Lemma 5).

Theorem 4. If \(F \) is a continuum on the boundary \(S \) of a cellular 3-cell in \(S^3 \) such that \(F \) does not separate \(S \), then \(F \) is cellular.

Proof. It follows from Lemma 7 that there exists a cellular 3-cell \(M \) such that \(\text{Bd} \ M \) is locally tame modulo \(F \). Then Theorem 5.2 of [23] insures that \(F \) is cellular.

Remark. The hypothesis that \(S \) is the boundary of a 3-cell in the previous theorem cannot be removed. Furthermore, Theorem 4 becomes false if we require
only that each component of \(S^3 - S \) be an open 3-cell. For example, one can grow two of the "feelers" described in [9] into opposite complementary domains of a sphere and let \(F \) be any arc containing the two wild points of the resulting sphere. It then follows from [16] that \(F \) is not cellular. However, \(F \) ought to be cellular if each component of \(S^3 - S \) is an open 3-cell and \(F \) contains at most one (of the two possible) points where \(S \) cannot be pierced by a tame arc. Theorem 5 is a special case of this conjecture.

Theorem 5. If \(S \) is a 2-sphere in \(S^3 \) that is locally tame modulo a 0-dimensional set, \(F \) is a subcontinuum of \(S \) that does not separate \(S \), each component of \(S^3 - S \) is an open 3-cell, and \(F \) contains at most one of the two possible points where \(S \) cannot be pierced by a tame arc, then \(F \) is cellular.

Proof. Under the conditions of the hypothesis \(S \) can have at most two wild points [8] and \(F \) can contain at most one of these points. Then there exists a disk \(D \) on \(S \) and a point \(p \in F \) such that \(F \subseteq \text{Int} \ D \) and \(S \) is locally tame at each point of \(D - p \). It follows from Corollary 1 and Theorem 14 of [15] that \(S \) is locally tame from one component \(V \) of \(S^3 - S \) at \(p \). If \(C = S \cup V \), then \(C \) is a cellular crumpled cube. Now we are able to use the technique in the proofs of Lemmas 6 and 7 to obtain a cellular 3-cell \(M \) such that \(M \subseteq C, \ D \subseteq \text{Bd} \ M, \) and \(\text{Bd} \ M \) is locally tame modulo \(D \). Then \(\text{Bd} \ M \) is locally tame modulo \(F \) [10], and Theorem 5 follows from Theorem 4.

References

12. N. Hosay, *The sum of a real cube and a crumpled cube is \(S^3 \)*, Notices Amer. Math. Soc. 10 (1963), 668.

Utah State University, Logan, Utah