On the minimal property of the Fourier projection
HTML articles powered by AMS MathViewer
- by E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer and D. E. Wulbert
- Trans. Amer. Math. Soc. 143 (1969), 249-258
- DOI: https://doi.org/10.1090/S0002-9947-1969-0256044-3
- PDF | Request permission
References
- D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of the best approximation, Dokl. Akad. Nauk SSSR 120 (1958), 1175–1177 (Russian). MR 0098941 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958. M. Golomb, Lectures on theory of approximation, Argonne National Laboratory, Argonne, Ill., 1962.
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008 P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1935), 282-288. S. M. Lozinski, On a class of linear operators, Dokl. Akad. Nauk SSSR 61 (1948), 193-196. (Russian) P. V. Lambert, Minimum norm projections on the linear spaces of finite sets of characters, Dissertation, Free University of Brussels, 1968. —, Réalité des projecteurs de norme minimum sur certains espace de Banach, Acad. Roy. Belg. Bull. Cl. Sci. (5) 58 (1968), 91-100.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 143 (1969), 249-258
- MSC: Primary 42.06; Secondary 41.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0256044-3
- MathSciNet review: 0256044