Building Cartesian products of surfaces with $[0, 1]$
HTML articles powered by AMS MathViewer
- by Robert Craggs
- Trans. Amer. Math. Soc. 144 (1969), 391-425
- DOI: https://doi.org/10.1090/S0002-9947-1969-0250314-0
- PDF | Request permission
References
- J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 26-28.
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145β158. MR 61377, DOI 10.2307/1969836
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465β483. MR 87090
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37β65. MR 100841, DOI 10.2307/1970092
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105β139. MR 107229, DOI 10.4064/fm-47-1-105-139
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583β590. MR 146811, DOI 10.2307/2372864
- R. H. Bing, Each disk in $E^{3}$ is pierced by a tame arc, Amer. J. Math. 84 (1962), 591β599. MR 146812, DOI 10.2307/2372865
- R. H. Bing, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145β192. MR 150744, DOI 10.2307/1970203
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331β341. MR 133812, DOI 10.2307/1970177 R. Craggs, Small ambient isotopies of a 3-manifold which transform one embedding of a polyhedron into another, Ph.D. thesis, Univ. of Wisconsin, Madison, 1967.
- Robert Craggs, Improving the intersection of polyhedra in $3$-manifolds, Illinois J. Math. 12 (1968), 567β586. MR 232367
- Robert Craggs, Small ambient isotopies of a $3$-manifold which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), 225β256. MR 275440, DOI 10.4064/fm-68-3-225-256
- Robert Craggs, Extending homeomorphisms between approximating polyhedra, Duke Math. J. 38 (1971), 161β168. MR 275441
- W. Graeub, Die semilinearen Abbildungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1950 (1950), 205β272 (German). MR 0042709
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29β53, 129β152. MR 58204, DOI 10.1112/plms/s3-3.1.29
- James Kister, Small isotopies in Euclidean spaces and 3-manifolds, Bull. Amer. Math. Soc. 65 (1959), 371β373. MR 107232, DOI 10.1090/S0002-9904-1959-10380-3
- D. R. McMillan Jr., A criterion for cellularity in a manifold. II, Trans. Amer. Math. Soc. 126 (1967), 217β224. MR 208583, DOI 10.1090/S0002-9947-1967-0208583-7
- Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96β114. MR 48805, DOI 10.2307/1969769
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159β170. MR 61822, DOI 10.2307/1969837
- C. D. Papakyriakopoulos, On Dehnβs lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1β26. MR 90053, DOI 10.2307/1970113
- D. E. Sanderson, Isotopy in $3$-manifolds. I. Isotopic deformations of $2$-cells and $3$-cells, Proc. Amer. Math. Soc. 8 (1957), 912β922. MR 90052, DOI 10.1090/S0002-9939-1957-0090052-8
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12β19. MR 121796, DOI 10.2307/1970146 J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939), 243-327. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Γtudes Sci. Publ. Math., 1963 (mimeographed notes).
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 144 (1969), 391-425
- MSC: Primary 57.01; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0250314-0
- MathSciNet review: 0250314