Čebyšev sets in Hilbert space
HTML articles powered by AMS MathViewer
- by Edgar Asplund
- Trans. Amer. Math. Soc. 144 (1969), 235-240
- DOI: https://doi.org/10.1090/S0002-9947-1969-0253023-7
- PDF | Request permission
References
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443–467. MR 240621, DOI 10.1090/S0002-9947-1969-0240621-X
- Arne Brøndsted, Conjugate convex functions in topological vector spaces, Mat.-Fys. Medd. Danske Vid. Selsk. 34 (1964), no. 2, 27 pp. (1964). MR 166580
- Arne Brøndsted, Milman’s theorem for convex functions, Math. Scand. 19 (1966), 5–10. MR 218866, DOI 10.7146/math.scand.a-10790
- A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605–611. MR 178103, DOI 10.1090/S0002-9939-1965-0178103-8
- N. V. Efimov and S. B. Stečkin, Support properties of sets in Banach spaces and Čebyšev sets, Dokl. Akad. Nauk SSSR 127 (1959), 254–257 (Russian). MR 0107158 V. L. Klee, Convexity of Čebyšev sets, Math. Ann. 142 (1961), 292-304.
- Victor Klee, Remarks on nearest points in normed linear spaces, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 168–176. MR 0223859 I. Singer, Some open problems on best approximation, Séminaire Choquet, Paris, 1967.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 144 (1969), 235-240
- MSC: Primary 46.15; Secondary 41.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0253023-7
- MathSciNet review: 0253023