Smooth homology spheres and their fundamental groups
HTML articles powered by AMS MathViewer
- by Michel A. Kervaire
- Trans. Amer. Math. Soc. 144 (1969), 67-72
- DOI: https://doi.org/10.1090/S0002-9947-1969-0253347-3
- PDF | Request permission
References
- Morris W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352–356. MR 149493, DOI 10.1090/S0002-9904-1963-10917-9
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622 Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. I, Yale University Notes, 1966.
- Michel A. Kervaire, On the Pontryagin classes of certain $\textrm {SO}(n)$-bundles over manifolds, Amer. J. Math. 80 (1958), 632–638. MR 102806, DOI 10.2307/2372775
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052, DOI 10.24033/bsmf.1624
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- John Milnor, Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957), 623–630. MR 90056, DOI 10.2307/2372566
- Michio Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math. 77 (1955), 657–691. MR 74411, DOI 10.2307/2372591
- K. Varadarajan, Groups for which Moore spaces $M(\pi ,\,1)$ exist, Ann. of Math. (2) 84 (1966), 368–371. MR 202143, DOI 10.2307/1970450
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 144 (1969), 67-72
- MSC: Primary 57.10
- DOI: https://doi.org/10.1090/S0002-9947-1969-0253347-3
- MathSciNet review: 0253347