CORRECTION TO "ORTHOGONAL REPRESENTATIONS OF ALGEBRAIC GROUPS"

BY

FRANK GROSSHANS

The proof of Lemma II.2 is incomplete. The difficulty arises in (i) where it is stated that \(\lambda = \sum_{r=1}^{n} m_r \alpha_r \) with each \(m_r \) an integer. This statement is not true in general for \(G = SL(n+1, K) \). However, for this \(G \) the element \(g \) in (ii) can be easily computed as follows. Let \(T \) be diagonal matrices in \(G \) with respect to a \(K \)-rational basis \(e_1, \ldots, e_{n+1} \) of \(V \). Denote by \(\Psi \) the automorphism of \(G \) given by \(h \rightarrow \Psi h^{-1} \). Then \(g \) is given by \(ge_r = (-1)^{r+1} e_{n-r+2} \) for \(r = 1, \ldots, n+1 \). Furthermore, \(\Psi \circ \theta = I_g \) and, hence, \(\theta(g) = g \).

DePaul University,
Chicago, Illinois