TRANSITIVE SEMIGROUP ACTIONS

BY

C. F. KELEMEM

Following Wallace [15], we define an act to be a continuous function $\mu: S \times X \to X$ such that (i) S is a topological semigroup, (ii) X is a topological space, and (iii) $\mu(s, \mu(t, x)) = \mu(st, x)$ for all $s, t \in S$ and $x \in X$. We call (S, X, μ) an action triple, X the state space of the act, and we say S acts on X. We assume all spaces are Hausdorff and write sx for $\mu(s, x)$. S is said to act transitively if $Sx = X$ for all $x \in X$ and effectively if $sx = tx$ for all $x \in X$ implies that $s = t$. The first section of this paper deals with transitive actions and especially with the case where the semigroup is simple. We obtain as a corollary that if S is a compact connected semigroup acting transitively and effectively on a space X that contains a cut point, then K, the minimal ideal of S, is a left zero semigroup and X is homeomorphic to K.

A C-set is a subset, Y, of X with the property that if M is any continuum contained in X with $M \cap Y \neq \emptyset$, then either $M \subseteq Y$ or $Y \subseteq M$. In the second section, we consider the position of C-sets in the state space and prove as a corollary that if S is a compact connected semigroup with identity acting effectively on the metric indecomposable continuum, X, such that $SX = X$, then S must be a group.

The author wishes to thank Professor L. W. Anderson for his patient advice and criticism.

Definitions and notation. The notation is generally that of Wallace [16] for semigroups and Stadtlander [12] for actions. Let S be a topological semigroup then we denote by $K(S)$ the unique minimal ideal (if it exists) of S and by $E(S)$ the set of idempotents of S. When the semigroup referred to is clear, the above will be shortened to K and E respectively. We recall that if S is compact then $K(S)$ exists and is closed and $E(S) \neq \emptyset$. For each $e \in E(S)$, $H(e)$ denotes the maximal subgroup of S containing e. S is a left zero semigroup if $xy = x$ for all $x, y \in S$. A left group is a semigroup that is left simple and right cancellative; it is isomorphic to $E \times G$ where E is a left zero semigroup, G is a group and multiplication is coordinate wise [2]. An algebraic isomorphism that is simultaneously a topological homeomorphism is called an isomorphism.

The Q-set of the action triple (S, X, μ) is the set $Q = \{x \in X \mid Sx = X\}$, thus if $Q = X$ the action is transitive. The action triple (S, X, μ) is said to be equivalent to...
the action triple \((T, Y, \nu)\) if there is an isomorphism \(\phi: S \rightarrow T\) and a homeomorphism \(\psi: X \rightarrow Y\) such that the following diagram commutes:

\[
\begin{array}{ccc}
S \times X & \overset{\mu}{\longrightarrow} & X \\
\phi \times \psi \downarrow & & \downarrow \psi \\
T \times Y & \overset{\nu}{\longrightarrow} & Y
\end{array}
\]

We say that \(s \in S\) acts as a constant if \(sx\) is a point. Finally \(X^*\) denotes the topological closure of \(X\). Examples of actions include topological transformation groups, semigroups acting on their underlying space by multiplication and the following: let \(A_1\) be a locally compact space and \(M(X)\) the set of all continuous functions of \(X\) into \(X\). With the compact open topology and composition of maps as multiplication, \(M(X)\) is a topological semigroup. Defining \(\mu: M(X) \times X \rightarrow X\) by \(\mu(f, x) = f(x)\) makes \((M(X), X, \mu)\) an action triple.

Transitive action. It follows from a result of Stadtlander [10] that if a compact semigroup, \(S\), acts transitively on \(X\) then the restriction of the act to \(K(S) \times X\) is still a transitive action. Thus we use the transitive actions of compact simple \((K(S) = S)\) semigroups as a tool to study the transitive actions of arbitrary compact semigroups.

We first show that for compact simple semigroups transitive action results from a seemingly weaker assumption.

Theorem 1.1. Let \(S\) be a compact simple semigroup acting on \(X\) such that \(Q \neq \emptyset\). Then \(S\) acts transitively on \(X\).

Proof. Let \(x \in Q\) and \(y\) be any member of \(X\). Since \(S = \bigcup \{H(f) \mid f \in E\}\) [1], \(X = Sx = \bigcup \{H(f)x \mid f \in E\}\) so that \(x \in H(f)x\) for some \(f \in E\). Then \(X = Sx = Sfx = \bigcup \{H(e)x \mid e \in Sf \cap E\}\). Thus \(y \in H(e)x\) for some \(e \in Sf \cap E\); say \(y = px\) where \(p \in H(e)\). Then \(x = fx = fex = fp^{-1}px = fp^{-1}y \in Sy\) and we have \(X = Sx \subseteq Sy \subseteq X\), that is \(Sy = X\). Since \(y\) is arbitrary, the action is transitive.

The author wishes to thank the referee for pointing out the above proof which is more concise than the original one.

A band is a semigroup \(S\) such that \(E(S) = S\), that is, every element is an idempotent. We now characterize the transitive actions of a compact simple band.

Theorem 1.2. Let \(S\) be a compact simple band acting transitively and effectively on \(X\). Then \(S\) must be a left zero semigroup, \(X\) and \(S\) are homeomorphic and the action is equivalent to multiplication in \(S\).

Two lemmas are necessary to complete the proof.

Lemma 1.3. Let \(S\) be a compact simple band acting transitively on \(X\). Then every element of \(S\) acts as a constant.
Proof. It is shown in [10] that if \(T \) is a compact semigroup acting transitively on \(X \) and \(e \in E \cap K \), then \((H(e), eX) \) is a topological transformation group which is transitive on \(eX \) and \(H(e)x = eX \) for each \(x \in X \). Since \(S \) is a band, \(S = E \cap K \) and \(H(e) = e \). Therefore \(eX \) is a point for each \(e \in S \).

The proof of Theorem 1.2 as stated could now follow from Lemma 1.3 and a result of Day and Wallace [4], however we choose to present the following lemma to cover the noneffective case. Let \(S \) be compact, \(\rho \) a closed left congruence on \(S \), and also let \(\rho \) denote the natural map from \(S \) onto \(S/\rho \). If \(\nu: S \times S/\rho \to S/\rho \) is defined by \(\nu(s, \rho(t)) = \rho(st) \), then \(\nu \) is an act called the canonical act [10]. Stadtlander has shown that if \(Y = Sx \) is an orbit of the action triple \((S, X, \mu) \) such that \(SY = Y \) and if \(\rho \) is defined as \((s, t) \in S \times S \mid sx = tx \) then \((S, Y, \mu) \) is equivalent to \((S, S/\rho, \nu) \) where \(\nu \) is the canonical act.

Lemma 1.4. Let \(S \) be a compact simple band acting transitively on \(X \) by the function \(\mu \) and let \(x_0 \in X \) and define \(\rho = \{(s, t) \in S \times S \mid sx_0 = tx_0 \} \). Then \(\rho \) is a two-sided congruence, \((S, X, \mu) \) is equivalent to \((S, S/\rho, \nu) \) where \(\nu \) is the canonical action and \(S/\rho \) is a left zero semigroup.

Proof. By Lemma 1.3, every element of \(S \) acts as a constant, thus \(\rho \) is a two-sided congruence and since \(X = Sx_0 \) is an orbit, we know \((S, X, \mu) \) is equivalent to \((S, S/\rho, \nu) \) by Stadtlander's result. Because every element of \(S \) acts as a constant, we have \(\nu(s, \rho(t)) = \nu(s, \rho(s)) = \rho(s^2) = \rho(s) \) for all \(s, t \in S \). Now let \(t_1, t_2 \in S/\rho \) then \(t_1 = \rho(s_1) \), \(t_2 = \rho(s_2) \) for \(s_1, s_2 \in S \). But then \(t_1t_2 = \rho(s_1)\rho(s_2) = \rho(s_1s_2) = \nu(s_1, \rho(s_2)) = \rho(s_1) = t_1 \) which shows that \(S/\rho \) is a left zero semigroup.

Proof of Theorem 1.2. We have only to note, since every element acts as a constant and \(S \) acts effectively, that \(\rho = \Delta \) the diagonal of \(S \). Thus \(S = S/\rho \) and an application of Lemma 1.4 completes the proof.

The following lemma is a partial converse to Lemma 1.3 to be used in the proof of Corollary 1.9.

Lemma 1.5. Let \(S \) be a compact simple semigroup acting effectively on \(X \) such that some element of \(S \) acts as a constant then \(S \) is a band.

Proof. Since \(S \) is simple, we know \(S \) is isomorphic to \((Se \cap E) \times eSe \times (eS \cap E) \) when the latter is endowed with the Rees multiplication and \(e \in E \) [17]. We will show that \(eSe = e \) thus making \(S \) isomorphic to the band \((Se \cap E) \times \{e\} \times (eS \cap E) \). Since \(S \) is simple every element acts as a constant, thus \(e(SEX) = y \) for some \(y \in X \). Let \(g \in eSe \), then \(gx = egex = e(gex)y = ey \) for all \(x \in X \), but \(S \) acts effectively, therefore \(g = e \), thus \(eSe = e \).

We now investigate the effect a cut point in the state space has in a transitive action by a compact connected semigroup. First recall that if \(G \) is a compact connected group acting transitively on \(X \) then \(X \) is homogeneous [9], that is, for every \(x, y \in X \), there is a homeomorphism \(h: X \to X \) such that \(h(x) = y \). Furthermore \(X \) is a continuum and if nondegenerate must contain at least two noncut
points which together with the fact that X is homogeneous implies that every point of X is a noncut point. Thus in the group case X cannot contain a cut point. This does not follow for semigroups however as the following example illustrates. Let $S=[-1,1]$ with the usual topology and for $s_1, s_2 \in [-1,0]$ and $t_1, t_2 \in [0,1]$ define multiplication in S as follows: $s_1s_2 = s_1$, $s_1t_2 = s_1$, $t_1t_2 =$ the usual product of the real numbers t_1 and t_2, $t_1s_2 =$ the usual product of the real numbers t_1 and s_2. Then S is a compact connected topological semigroup with identity. Now let $X = [0,1]$ with the usual topology. Define $\mu : S \times X \to X$ as follows where s_1 and t_1 are as above and $x \in X; \mu(s_1, x) = -s_1$ and $\mu(t_1, x) =$ the usual product of the real numbers t_1 and x, then μ is a transitive and effective act. Thus, the state space of a transitive act by a compact connected semigroup may contain cut points, however, in Corollary 1.9 already mentioned in the introduction, it is shown that this has a profound effect on the multiplication of S. We begin with the following lemma.

Lemma 1.6. Let S be a compact connected simple semigroup acting transitively on X such that no element of S acts as a constant. Then X has no cut points.

Proof. $Sx = X$ implies that X is a continuum and since no element acts as a constant, fX is a nondegenerate continuum for all $f \in E$. But then fX contains at least two noncut points of fX and since $(H(f), fX)$ is a transitive topological transformation group [10] making fX homogeneous [9], we have that every element of fX is a noncut point of fX. We now show for every $s \in S$, $sX = fX$ for some $f \in E$. Let $s \in S$. Because S is simple, $S = \bigcup \{H(e) \mid e \in E\}$ [1], thus $s \in H(f)$ for some $f \in E$ and since $(H(f), fX)$ is a topological transformation group, $s(fX) = fX$. Hence, $fX = s(fX) \subseteq sX = (fSf)X \subseteq fX$, whence $fX = sX$. Thus, for each $s \in S$, no point of sX is a cut point of sX.

Suppose $p \in X$ cuts X, then $X \setminus \{p\} = Y \cup Z$ where Y and Z are mutually separated. Let $A = \{s \in S \mid sX \subseteq Y \cup \{p\}\}$ and $B = \{s \in S \mid sX \subseteq Z \cup \{p\}\}$, then $S = A \cup B$. For let $s \in S$ and suppose $p \notin sX$, then since sX is connected, $sX \subseteq Y$ or $sX \subseteq Z$, thus $s \in A \cup B$. Now suppose $p \in sX$, then since p is a noncut point of sX, $sX \setminus \{p\}$ is connected which implies that $sX \setminus \{p\} \subseteq Y$ or $sX \setminus \{p\} \subseteq Z$ and $s \in A \cup B$. Therefore $S = A \cup B$. Now suppose that $t \in A \cap B$, then $tX = (Y \cup \{p\}) \cap (Z \cup \{p\}) = \{p\}$ which is impossible since no element acts as a constant, hence $A \cap B = \emptyset$. It is easy to show that A and B are both closed and thus contradict the fact that S is connected. Therefore X has no cut points.

Since a left group that is not left zero always acts transitively on itself with no element acting as a constant, we have the following corollary.

Corollary 1.7. A compact connected left group that is not a left zero semigroup contains no cut points.

It follows from a result of Stadtlander [10] that if S acts transitively on X then $K(S)$ acts transitively on X and since $K(S)$ is connected whenever S is [13] we can apply Lemma 1.6 to the action of $K(S)$ on X to obtain the following theorem.
Theorem 1.8. Let S be a compact connected semigroup acting transitively on X such that no element of $K(S)$ acts as a constant. Then X has no cut points.

It is easy to see that if S acts effectively then $K(S)$ does also, thus we can put together Lemma 1.5 and Theorems 1.2 and 1.8 to obtain the following result, first proved for semigroups by Faucett [5].

Corollary 1.9. Let S be a compact connected semigroup acting transitively and effectively on X. Then either (i) X has no cut points or (ii) $K(S)$ is a left zero semigroup and X is homeomorphic to $K(S)$.

C-sets in the state space. Let $Y = \{(0, y) \mid -1 \leq y \leq 1\}$ and let

$$X = \{(x, \sin (1/x)) \mid 0 < x \leq 1\} \cup Y,$$

then Y is a C-set in X and the complement of Y is an open dense half line in X. C-sets of this type have been studied independently by Day and Wallace [4] and Stadtlander [19]. It follows from their results, for example, that a compact connected semigroup with identity cannot act on the space X defined above such that $\emptyset \neq \partial X$. This also follows from the results to be given below.

In [8], Hunter has shown that if S is a compact connected semigroup with identity and if Y is a nondegenerate C-set contained in S, then $Y^* = K(S)$ and $K(S)$ is a group. We use the techniques of Hunter as an important tool in the proof of the following theorem.

Theorem 2.1. Let S be a compact connected semigroup with identity acting on the continuum X with $S X = X$ and suppose Y is a nondegenerate C-set in X. Then $Y \subseteq eX$ for some $e \in E(S) \cap K(S)$.

We need the preliminary result that follows.

Theorem 2.2. Let S be a compact connected semigroup with identity and zero acting on the continuum X with $S X = X$ and such that zero acts as a constant. Then X cannot contain a nondegenerate C-set.

Proof. Let $OX = \theta \in X$. Once it has been shown that θ cannot be an element of a nondegenerate C-set in X, the proof of Theorem 2.2 proceeds almost exactly the same as the proof of Theorem 1 of [8], thus we will show only that θ cannot be an element of a nondegenerate C-set in X. In order to do this we will use the notion of an ideal in X. If the semigroup S acts on the space X and I is a subset of X such that $S I \subseteq I$, then I is called an ideal of X. For $A \subseteq X$, define

$$I_0(A) = \bigcup \{I \subset A \mid I \text{ is an ideal of } X\}.$$

If S is compact and A is an open set containing an ideal of X, then $I_0(A)$ is an open ideal of X. It is easy to see that under the conditions of this theorem, every ideal of X is connected.
Now, suppose $\theta \in Y$ a nondegenerate C-set in X and let U be open in X such that $\theta \in U$ and $Y \cap (X \setminus U) \neq \emptyset$. Let V be open in X such that $\theta \in V \subset V^* \subset U$ and let $W = I_0(V)$. Then W is an open connected set, W^* is a continuum and $\theta \in W^* \subset U$. But $W^* \cap Y \neq \emptyset$ and $W^* \neq Y$, hence $W \subset W^* \subset Y$, a contradiction since a C-set has empty interior.

Let S be a compact connected semigroup with identity and let T be a compact connected subsemigroup of S such that (i) $T \cap K(S) \neq \emptyset$, (ii) $1 \in T$ and (iii) if R is a compact connected subsemigroup of T satisfying (i) and (ii) then $R = T$. T is said to be algebraically irreducible from 1 to $K(S)$. In [7], Hofmann and Mostert show that if S is a compact connected semigroup with identity then S contains an algebraically irreducible semigroup and every algebraically irreducible semigroup is abelian.

We recall the Rees quotient [20]. Let S be a semigroup, I a closed ideal of S and define $\rho = \{(s, t) \in S \mid s = t \text{ or } s, t \in I\}$ then ρ is a closed congruence and we call the factor semigroup S/ρ the Rees quotient and denote it by S/I. We now use Theorem 2.2 to prove Theorem 2.1.

Proof of Theorem 2.1. Let T be a subsemigroup of S algebraically irreducible from 1 to $K(S)$, then T is a compact connected abelian semigroup with identity acting on X with $TX = X$. Let $T' = T/K(T)$ be the Rees quotient and $X' = X/K(T)X$ be the ordinary topological quotient and let $\eta: T \rightarrow T'$ and $\beta: X \rightarrow X'$ be the canonical maps, then T' acts on X' by $\eta(t)\beta(x) = \beta(tx)$ [10] and satisfies the hypothesis of Theorem 2.2. It is routine to show that if D is a continuum in X' and $E = \beta^{-1}(D)$ then E is a continuum in X.

We now show that $Y \subset K(T)X$. Suppose not then $\overline{Y} = \beta(Y)$ is a nondegenerate subset of X' which is a C-set. For let M be a continuum in X' with $M \cap \overline{Y} \neq \emptyset$ and consider the two cases (i) $Y \cap K(T)X = \emptyset$ and (ii) $Y \cap K(T)X \neq \emptyset$. In case (i), $\beta^{-1}(\overline{Y}) = Y$ since $\beta|_{X(K(T)X)}$ is a homeomorphism, and Y meets the continuum $\beta^{-1}(M)$, thus $\beta^{-1}(M) \subset Y$ or $Y \subset \beta^{-1}(M)$ which implies $M \subset \overline{Y}$ or $Y \subset M$. In case (ii), $Y \cap K(T)X \neq \emptyset$ implies $K(T)X \subset Y$ since $K(T)X$ is a continuum hence $\beta^{-1}(\overline{Y}) = Y$ and the same argument as in case (i) shows that \overline{Y} is a C-set. But this contradicts Theorem 2.2, therefore $Y \subset K(T)X$.

Since T is abelian, $K(T)$ is a group and $K(T) \subset K(S)$ which implies $K(T) \subset H(e)$ for some $e \in K(S) \cap E(S)$, thus $Y \subset K(T)X \subset H(e)X \subset eX$.

Note. We have actually proved a slightly stronger result than that stated since Y is contained in the state space of the abelian topological transformation group $(K(T), eX)$.

As an application of Theorem 2.1, we prove the following corollary, which is a special case of a more general theorem in [18].

Corollary 2.6. Let S be a compact connected semigroup with identity acting effectively on the metric indecomposable continuum X with $SX = X$, then S is a group.

Proof. Let Y be a composant of X, then, as is well known, Y is a C-set so
Y^eX for some e ∈ E ∩ K. But Y^* = X [6], thus X = eX and 1y = y = ey for all y ∈ X which implies 1 = e since S acts effectively. But 1 ∈ K implies K is a group and K = S.

REFERENCES

Pennsylvania State University, University Park, Pennsylvania