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CLASSIFYING SPACES AND INFINITE
SYMMETRIC PRODUCTS

BY

M. C. McCORD(l)

1. Introduction. The object of study in this paper is a construction B(G, X)

which essentially includes the classifying space construction BG of Milgram [7]

and Steenrod [12] and the infinite symmetric product construction SP(X) of Dold

and Thorn [4] as special cases.

§§2, 3, and 4 are preliminary in nature. Let us just remark that §2 describes the

category of spaces we are working in (a modification of Steenrod's [11]). We make

the convention that in the rest of the paper all spaces, products, topological monoids,

etc., are meant in the sense of this category.

§5 deals with the algebraic and set-theoretic side of the construction B(•, ■). The

definition is quite simple: If G is a monoid with unit e and X is a based set, then

B(G, X) is the monoid of all functions u: X->G such that u(*) = e and such that

u(x) = e for all but finitely many xe X.

In §6 we topologize B(G, X) when G is an abelian topological monoid and X

is a based space, in such a way that B(■, ■ ) becomes a bifunctor to the category of

abelian topological monoids. If G is an abelian topological group, then so is

B(G, X).

This construction includes the following special cases (up to topological iso-

morphism): (1) (B(G, S°)xG. (2) B(G, Sl)xBa as in [7] or [12]. (3) B(G, I)xEG

as in [7] or [12]. (4) If G is a discrete abelian group, then B(G, Sn) is an Eilenberg-

MacLane space K(G, n) (see §10). (5) If Z+ is the additive monoid of nonnegative

integers, then B(Z+, X)xSP(X) as in [4]. (6) If Z is the additive group of integers,

then B(Z, X)xAG(X), defined in [4] as a certain quotient space of SP(X v X).

(7) B(Z/mZ, X)xAG(X; m), defined in [4] as AG(X)/mAG(X). (8) One could

form topological monoids such as B(SP(X), Y), or more generally B(B(G, X), Y).

In 6.13 it is seen that the latter is topologically isomorphic to B(G, X A Y).

In §7 we generalize a result of Dold and Thorn [4] by showing that B(G, X) is

a CW complex whenever G is a discrete abelian monoid and X is triangulable.

For a fixed abelian topological monoid [group] G, the functor B(G, •) has a

tendency to convert cofibrations A -> Z-> X/A to quasifibrations [fibrations]

(1.1) B(G, A) -> B(G, X) -> B(G, X/A).
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In §8 we give a theorem in this direction (see Theorem 8.8 together with Remark

8.9), generalizing one of the theorems of Dold and Thom [4]. The natural filtration

of B(G, ■) (see (5.1) and (6.1)), which figures in the proof, generalizes filtrations

used in [7] and [12], but does not correspond to filtrations used in [4]. Part of the

proof is abstracted into §4.

If G is an arbitrary (not necessarily abelian) topological monoid, the sequence

(1.1) still exists set-theoretically, as will be seen from §5. When can one topologize

it appropriately? In §9 we do this for the simplest nontrivial pair, (X, A) = (I, S°).

This topologization is consistent with that of §6 if G is abelian (see 9.18). Since

B(G, S0) x G (algebraically), we actually view the sequence as

(1.2) G -> B(G, I) -^ B(G, S1).

This sequence is homeomorphic to the sequence G -*■ Ea —> Ba constructed by

Milgram [7] or Steenrod [12]. We do not actually prove the equivalence, but we

set up enough basic properties of (1.2) that one could easily do so. Setting up these

properties costs little extra effort, because the method for topologizing B(G, I)

and B(G, S1) is very close to the general method of §6 for topologizing B(G, X)

when G is abelian—with the result that §9 is almost a special case of §§6 and 8.

In particular, the proof of the fibration theorem of §8 requires only minor modifica-

tions to prove the following (9.17): If G is a topological group such that {e} -> G

is a cofibration, then (1.2) is a numerable principal G-bundle. Numerability (in the

sense of Dold [3]) is not shown in [7] or [12].

In §10 we discuss canonical maps B(G, X) -» Q.B(G, SX), both in the context of

§6 with G abelian, and in the context of §9 with X=S° (the latter being related to

[7, §5]). Under suitable restrictions these maps are shown to be isomorphisms of

//-spaces. (We get them to be actual homotopy equivalences, not just weak

homotopy equivalences.) An immediate consequence is that if G is a discrete

abelian group, then B(G, Sn) is an Eilenberg-MacLane space K(G, n).

In the last section (§11) we study the groups of based homotopy classes

[A', B(G, Y)], where X and Y are based spaces and G is a discrete abelian group.

If G is also a module, then B(G, Y) is a topological module, so that [X, B(G, Y)]

is a module. Note that by the preceding paragraph,

(1.3) [X, B(G, Sn)] X Ën(X; G)

for nice enough X. Dually we get (see 11.4)

(1.4) [S\B(G, Y)]xHn(Y;G)

for nice enough Y, generalizing one of the main theorems of Dold and Thom [4].

Perhaps one could use the modules [X, B(G, Y)] fruitfully as a definition of

homology and cohomology in a "from scratch" development of algebraic topology.

This point of view is emphasized in §11. In an entirely direct and elementary way,
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we define generalized cross products in the modules [X, B(G, Y)]. First we define

continuous bilinear maps

(1.5) B(G, Y) x B(G', Y') -► B(G ® G', Y A  Y'),

and then these give directly the required products

(1.6) [X, B(G, Y)] x [X', B(G', Y')] -► [X A X', B(G ®G',Y h Y')].

We end the section by proving in a simple and rather geometric fashion a com-

mutativity law for (1.6) which includes skew commutativity for the case of homology

(1.4) and of cohomology (1.3). The pairing (1.5) figures in a homotopical develop-

ment of the Steenrod operations, which however is not treated in this paper.

I am grateful to Andreas Dress and N. E. Steenrod for useful discussions, and

to J. C. Moore for most of the information in §2.

2. Compactly generated spaces. The paper [11] of Steenrod shows why it is

convenient to work in the category of compactly generated Hausdorff spaces. In

some contexts, though, the requirement of the Hausdorff condition can be a

problem, because certain standard operations on spaces can lead outside the

category. For example, if (A", A) is a closed pair of spaces in the category, X/A may

not be in the category. There is a more general problem for adjunction spaces,

and a problem for unions of expanding sequences. In the presence of certain extra

conditions (see [11]) one can be guaranteed that the spaces remain in the category.

But in some situations these conditions may be absent or difficult to verify. I have

learned from J. C. Moore how one can slightly enlarge the category so that it has

better closure properties, but still has the convenient technical properties in [11].

We proceed as follows.

When we call a space compact we follow the French usage and include the

Hausdorff property. A subset A of a space X, is compactly closed, if for every

map <p: K-> X, where K is a compact space, y~xA is closed in K. A space X is

called a k-space if every compactly closed subset of X is closed.

A space A' is a weak Hausdorff space if for every map <p: A'-> X, where K is a

compact space, cpK is closed in X. This property of spaces is between 7X and T2.

It is stable under the formation of cartesian products and subspaces.

2.1. Lemma. If X is a weak Hausdorff space, then for every map cpofa compact

space K into X, the image cpK is compact.

Proof. The main point of course is that «pA'is Hausdorff. If xx and x2 are distinct

points of <pK, then from the facts that X is Tx and K is normal, we can get disjoint

open sets Ux and U2 containing <p " lXi and <p ~ 1x2, respectively. Since X is weak

Hausdorff, the sets cpK—cp(K-Ux) and ¡pK-cp(K-U2) are open in <pK; they are

disjoint and contain Xx and x2, respectively.

Note that as a result of this lemma, a subset of a weak Hausdorff space X is
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compactly closed if and only if its intersection with every compact subset of X is

closed.

Let us call a space compactly generated if it is a weak Hausdorff ¿-space. The

category of compactly generated spaces is the full subcategory of the category of

topological spaces whose objects are the compactly generated spaces. This is the

category in which we wish to work. It is slightly larger than the category of com-

pactly generated Hausdorff spaces studied in [11]. Nevertheless one can carry over

essentially all the ideas of [11].

In particular, if X is a topological space, let kX denote the space whose under-

lying set is that of X and whose closed sets are the compactly closed subsets of X.

Iff: X -> Y is a map, we let kf: kX-+ kYbe the map whose underlying function is

that off. Then A: is a retraction functor from the category of all spaces onto the

category of ¿-spaces. The weak Hausdorff property is stable under A:. If X and Y

are spaces, let Xx Y=k(Xxc Y), where xc denotes the usual cartesian product.

It is easy to check that x is a product for the category of compactly generated

spaces. One defines the product for systems analogously. As in [11] one forms

mapping spaces by using first the compact-open topology and then applying the

functor k.

No separation condition is required for the following proposition, whose proof

is analogous to that of Theorem 4.4 in [11]. A proclusion is a surjective map

whose range has the quotient topology.

2.2. Proposition. If X and Yare k-spaces and the maps f: X-+ X' and g: T->- Y'

are proclusions, then fix g: XxY-yX'xY'is a proclusion.

2.3. Proposition. A k-space X is a weak Hausdorff space if and only if the diagonal

Ax is closed in Xx X.

Proof. Sufficiency: Suppose y is a map of a compact space K into X. It suffices

to show that <pK is compactly closed. So let f-L-> X be a map where L is a

compact space. Then t~1(pK=proj2 (<px</j)~1Ax is closed in L.

Necessity: We are to show that Ax is compactly closed in XxcX. So let

<p: K-+ XxcX be a map where K is compact. By 2.1, A = proJ! <pK u proj2 tpK is a

closed compact subspace of X. Now AA is closed in AxcA and <pK^AxcA, so

<p"lAx=ç>"1Ail is closed in K.

The following proposition is one of the reasons for the better closure properties

of our category. Its proof is immediate from 2.2 and 2.3, and from the fact that

every quotient space of a /c-space is a ¿-space.

2.4. Proposition. If X is compactly generated and p : X -> Y is a proclusion,

then Y is compactly generated if and only if(p xp)~1AY is closed in Xx X.

Let us call a map of pairs h: (X, A) -> ( Y, B) a relative homeomorphism provided

A is closed in X, h maps X proclusively onto Y, and h maps X— A bijectively to

Y—B. It follows that B is closed in Y, that n maps A proclusively onto B, and maps
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X— A homeomorphically onto Y—B. It also follows that A induces a homeo-

morphism of the adjunction space X uhU B onto Y. Conversely, adjunction

spaces give rise to relative homeomorphisms.

2.5. Proposition. If A: (X, A) ->(F, B) is a relative homeomorphism, where X

and B are compactly generated, then Y is compactly generated. In particular, X/A

is compactly generated.

Proof. (A x A) -1 Ay = Ax u (A x A) "* AB.

The following proposition is easy to establish.

2.6. Proposition. Suppose that a space X is the union of an expanding sequence

(X0, Xx, X2,...) of closed subspaces and X has the topology of the union. If each Xn

is compactly generated, then so is X.

2.7. Convention. Throughout the rest of this paper we will assume that all

spaces are compactly generated; correspondingly we usually omit the modifier

"compactly generated". All products and mapping spaces are taken in this

category (see above). The notions of topological group, group action, fiber bundle,

et cetera, are modified in accordance with this notion of product.

The following lemma will be applied several times.

2.8. Lemma. Suppose given maps

P i qx-?~*x'—► r*=— y,

where p is surjective, i is infective, and q is proclusive. Suppose q~liX' is the union

of a finite collection {Ya) of closed subsets of Y. Suppose there are maps pa: Ya -> X

making the following diagrams commutative:

Pa
x<r— ra <= y

p

x' —!—> r.

Then i is a closed imbedding and p is a proclusion.

Proof. We claim the following: If F<= X' and p~lF is closed, then iF is closed.

For we have

q-HF - (q-HF) n U Ya = (J (il Y.YHF = U r*lP~lF,
a a a

so that q~liF is closed because it is a finite union of closed subsets of Y. Since q

is proclusive, iF is then closed. This assertion, combined with the hypotheses that

p is a surjective map and i is an injective map, clearly implies the conclusion.

We close this section by recalling a definition from [11], A pair (X, A) of spaces
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is called an NDR pair if there exist maps h: X x I'-*■ X and u: X^ I such that

A=u~\0), h(x, t) = xfor(x, t)e(XxO)u(Ax I), andh(x, I) e A forx e w^O, 1).

Such a pair of maps (h, u) is said to represent (X, A) as an NDR pair.

3. Based spaces. We denote all base points by *. A based space X will be called

nicely based if the inclusion {*} -+ X is a cofibration, or equivalently [11], (X, {*})

is an NDR pair. We use the terminology based map for a base point preserving map,

and based homotopy for a homotopy each level of which is a based map. If X and

Y are based spaces, [X, Y] denotes the set of all based homotopy classes of based

maps X-*- Y.

The smash product of based spaces X and Y is

X a  Y=(Xx Y)/(Xx {*} u {*} x Y).

It follows from 2.2 that the smash product is associative up to homeomorphism.

We denote the image of (x, y) e Xx Y in X A Y by x a y.

The unit interval /and its boundary S°={0, 1} shall have base point 0. We let

S1—I/S° and we denote the image of t e /in S1 by t. The n-sphere is Sn — S1 a • • •

A S1. We let CX=Ia X, SX^S1 A X. The path space PX of X is the space of

based maps / -*> X, and the loop space Q.X is the subspace of PX consisting of all

a with a(l) = *. For a e PX and s e I, we let a$ e PX be given by a'(t) = a(st).

Iff: X-*- Y is a based map, the mapping track off is

Ef = {(x, a) e XxPY : f(x) = a(l)}.

It is well known that iff is a based (Hurewicz) fibration, then the canonical map

/" X*) -* Ef, given by x t-> (x, *), is a based homotopy equivalence.

3.1. Lemma. Iff: X ->■ Y is a based map and X is contractible, then the canonical

map j: Qy-> E¡, given byj(a) = (*, a), is a based homotopy equivalence.

Proof. Let ht : X -*■ X be a contraction (n0 = *, Aj = id). We define a homotopy

inverse t '• £/ -*■ Q T for _/ by

«x,.X0-«<20        ifOS/Si,

= fih2-2t(x)  if * ¿ r á l.

Now for any eu e Qy, </;/(<") is given by í h» ai(2î) for ?:£•£ and in-* for rè^.

So clearly </r °y'~id. On the other hand, define a homotopy gt: Ef-> E¡ by gt(x, a)

= (ht(x), t(x, a)a~tl2)). One easily checks that g0=j ° t and gi = id.

4. Numerable G-spaces. For a fixed topological group G, consider the category

of (right) G-spaces and G-maps. We require of a G-space £ that the set

{(x,x-g) : xeE,geG}

be closed in £ x £. By 2.4, this is equivalent to the condition that the orbit space

£/G remains compactly generated. It automatically holds when G is compact.
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An equivariant partition of unity (tt¡) on a G-space F is a system of G-maps

TTf. E -*■ / (/ having the trivial G-action) such that (1) each point of E is contained

in an open G-subspace of E intersecting only finitely many of the sets irfl(0, 1],

and (2) 2> "vM = 1 for each x in E.

A G-space E will be called numerable if there exist an equivariant partition of

unity (tt,) on £ and for each j a G-map y,: nf ^0, 1] -► G. If p: E->- E/G denotes

the quotient map, then it is easy to see that (E, p, E/G) is a locally trivial principal

G-bundle which is numerable in the sense of Dold [3]. In particular, by [3] or [6],

p is a fibration—even more, for each choice of base point in E, p is a based fibration.

4.1. Lemma. Suppose given a G-space E and a sequence of G-maps pn: E-+I,

n=0, 1, 2,..., such that E is covered by the sets pn\0, 1]. Then there exists an

equivariant partition of unity (ir„), n = 0, 1, 2,..., on E such that tt'1^, l]<^p~l(0, 1]

for each n.

Proof. First define G-maps t„: £-► / by

rn(x) = max (o, pn(x)-n 2 Pi(x)J.

Clearly t'^O, l]c/3n"'(0. !]■ It can be checked that (r¿x(0, 1]) is an equivariantly

locally finite open cover of £; compare with the argument on p. 237 of [3]. Then

we let TTn(x) = TH(x)lt?m o rt(x).

The following theorem, which will be used in §§8 and 9, can be viewed as a

strengthening of Theorem 1.2 of Rothenberg and Steenrod [10].

4.2. Theorem. Let E be a G-space with action map <p : E x G —> E. Suppose E is

the union (with the topology of the union) of a sequence of closed G-subspaces

0 = £_! c E0 <= Ex <= ■ • • c En <= • • • <=■ E.

Suppose that for each « = 0 there exists a subspace Dn ofE such that (Dn, Dn n £„_ x)

is an NDR pair and such that <p defines a relative homeomorphism (Dn, Dn n En~x)

x G —► (En, Fn_ x). Then E is a numerable G-space.

Proof. Let us understand a pair of G-spaces to be a G-NDR pair if it has a

representation as an NDR pair (see §2) where both maps of the representation are

G-maps (/ having the trivial G-action). If we let Dn above have the trivial G-action,

then clearly (Dn, Dn n En-x)xG is a G-NDR pair. Since <p defines an equivariant

relative homeomorphism from this pair to the pair (En, E„-x), it follows from the

G-analog of Lemma 8.4 of [11] that (En, £„.0 is a G-NDR pair. Then, by the

G-analog of Theorem 9.4 of [11], (£, £„) is a G-NDR pair for each n > -1.

Let then hn: Exl^> E and un: E-*-1 be G-maps representing (£, £n) as an NDR

pair. We are going to apply Lemma 4.1. For each n = 0 define a G-map pn : E -> / by

Pn(x) = (l-un(x))-un.x(hn(x, 1)).
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It is easy to check that

(4.3) £„-£„-! c p"H0, 1] c nn(-, i)-H£n-£„-i).

Because of the first inclusion, the sets pn*(0, 1] obviously cover E. We can define

a G-map yn : pñ 1(0, 1 ] -* G as the composition of the following three G-maps :

p-^O, 1] -> £„-£„_! -* (Dn-(Dn n £n.x)) x G-* G.

The first is the restriction of n„(-, 1), which exists because of (4.3). The second is

defined by the inverse of the relative homeomorphism defined by <p. The third is

the projection. Now if we apply 4.1, we get an equivariant partition of unity (irn)

on £ such that tt~ 1(Q, lJcp-^O, 1]. The G-maps yn restrict to G-maps n~ a(0, l]->-G,

and the proof is complete.

5. The monoids B(G, X). Let G be a monoid—a set with an associative multi-

plication having a two-sided unit e. Let A* be a based set. We let B(G, X) denote the

set of all functions u: X -> G such that u(*) = e and such that u(x) = e for all but

finitely many x in X. B(G, X) is again a monoid under pointwise multiplication of

functions. Let this operation be denoted by ©. (Thus (u © u')(x) = u(x)-u'(x).) If

G is abelian, then so is B(G, X). If G is a group, then so is B(G, X).

If g e G and x e X—{*}, let gx denote the element of B(G, X) whose value at x

is g and whose value elsewhere is e. We agree that g* is the unit of B(G, X), the

function whose value everywhere is e.

For each integer n ä 0, let Bn(G, X) be the set of members of B(G, X) whose

value is e on at most n elements of X. Thus B0(G, X)={e} and for n^ 1, Bn(G, X)

consists of those elements expressible in the form gyXy ©• • ■ © gnxn, gt e G, x¡ e X.

We have B(G, X) as the union of an increasing sequence of subsets

(5.1 ) B0(G, X) c By(G, X) c . •. c Bn(G, X) c ... c B(G, X).

5.2. Proposition. If <p:G-+G' is a morphism of monoids and f- X-+ X' is a

morphism of based sets, then there exists a unique morphism of monoids

B(9,t):B(G,X)-+B(G',X')
satisfying

(5.3) B(<p, t)(gyXy © ••• © gnXn) = (WlX^l) © • ■ • © (9gn)(tXn)

for all gi e G, xt e X, provided at least one of the following conditions holds: (a) G'

is abelian, (b) t is injective on A'-i/<~1(*).

Proof. If (a) or (b) holds, then we can define B(<p, t/>) as follows. If u e B(G, X),

let B(qp, t)(u) be the based function A" ~> G' whose value at each x' e X'—{*} is

the product in G' of the finite set {<p(u(x)) : x e fl(x'), u(x)^e}, where it is

understood that the product of the empty set is e. The product of this set is well

defined if G' is abelian, and it is well defined under condition (b) because then the

set has at most one element. It is easy to check that B(<p, t) is a homomorphism
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and that B(<p,</j)(gx) = (cpg)(i(ix) for arbitrary geG, xeX. Hence (5.3) holds.

Uniqueness is obvious.

We shall denote B(cp, id) simply by 95* and denote B(id, </i) by <//* whenever it is

defined. From this proposition one can note the various ways in which the con-

struction B(■, ■) can be restricted to be a functor, covariant in both variables.

6. The abelian topological monoids B(G, X). In this section we suppose G is an

abelian topological monoid (written additively) and Y is a based space. We are

going to put a topology on B(G, X) that will make it again an abelian topological

monoid. We recall Convention 2.7; we are working in the category of compactly

generated spaces. We shall want to verify that B(G, X) remains in that category.

For each n^Owe make Bn(G, X) a space by giving it the quotient topology from

the following map pn whose domain is the n-fold product (G x X)n :

(61) (GxXy—>Bn(G,X),

((gl, Xx), ..., (gn, Xn)) H> gxXx ©• • • © gnXn.

We understand that po(0)=O.

6.2. Lemma. For each n>0, Bn-x(G, X) is a closedsubspace of Bn(G, X).

6.3. Definition. If G is an abelian topological monoid and X is a based space,

then B(G, X) shall have the topology of the union of the expanding sequence of

spaces Bn(G, X), where Bn(G, X) has the quotient topology from (6.1).

Proof of 6.2. The inclusion map i: Bn-x(G, X) -> Bn(G, X) is continuous

because it can be covered by the map (G x X)n ~1 -> (G x X)n that tacks on the

coordinate (0, *). To see that i is a closed map we apply 2.8 to the maps

(G x XT-1 ^> 5n-i(G, X) —'-+ Bn(G, X) J^- (G x X)\

For 1 új¿n and 1 £k<l¿n, define subsets of (Gx X)n as follows:

Y i = {((gi, xx),..., (gn, xn)) : g¡ = 0 or x¡ = *},

Ykt = {((gx, Xx), ..., (gn, Xn)) : Xk = X¡\.

It follows from the weak Hausdorff property of X and G and from 2.3 that Y¡

and Ykl are closed in (G x X)n. It is easy to see that p.' lBn_ x(G, X) is the union of

the Yj and the Ykl. Let p¡: Y¡ -> (G x X)n ~l be the map that omits they'th co-

ordinate (gj, x,). Let pkl: Ykl^>-(GxX)'1-1 be the map that replaces the kth

coordinate (gk, xk) by (gk+g¡, xk) and omits the /th coordinate. Then it is easy to

check that the hypotheses of 2.8 are satisfied.

For the purposes of the next lemma and of Theorem 9.18 let us introduce the
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following notation. Let S„ be the group of permutations of {1, 2,..., n). For any

space Y define a right action

(6.4) y « x Sn -+ r»,       (*,. • •, vn) • a = (>>c(1),..., >v<n,).

The orbit space SPnY= Yn/Sn (the n-fold symmetric product of Y) is still com-

pactly generated by the first paragraph of §4.

6.5. Lemma. B(G, X) is compactly generated.

Proof. By 6.3 and 2.6 it suffices to show that each Bn(G, X) is compactly

generated. The case n=0 is trivial. Suppose «>0 and suppose, inductively, that

Bn.x(G, X) is compactly generated. Since G is abelian, the proclusion pn factors

through the proclusion (G x X)n -*■ SPn(G x X), giving a proclusion

ßn:SPn(GxX)-+Bn(G,X).

It is easy to check that fin is injective on the complement of p~lBn-x(G, X). Since

Bn..x(G, X) is closed, then, ßn defines a relative homeomorphism

(SP«(GxX), pñ'Bn-ÁG, X))-+(Bn(G, X), Bn-x(G, X)).

Hence by 2.5, Bn(G, X) is compactly generated.

6.6. Proposition. If G is an abelian topological monoid and X is a based space,

then B(G, X) is an abelian topological monoid. If further G is an abelian topological

group, then so is B(G, X).

Proof. To verify continuity of the addition in B(G, X) (defined in §5) it suffices

by 6.3, 6.5, and Theorem 10.3 of [11], to show that its restriction to Bm(G, X)

xBn(G, X) is continuous for all m, n^O. But this restriction can be put into a

commutative diagram

(GxX)mx(GxX)n —> (GxX)m+n

Um*Mn \,lm + n

Bn(G, X) x Bn(G, X) —> Bn+n(G, X)

where the upper map is the obvious homeomorphism. Since /xm x pn is a proclusion

by 2.2, the result follows. Similarly if G has a continuous inversion, then the

inversion in B(G, X) is seen to be continuous by looking at the commutative

diagrams

(G x X)n —> (G x xy

Pn Pn

Bn(G, X) —> Bn(G, X)

where the upper map sends ((g1; xx),..., (g„, xn)) to ((-gx, Xx),. ..,(-gn, xn)).
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6.7. Proposition. Suppose <p: G -> G' is a morphism of abelian topological monoids

and f- X-*- X' is a based map. Let

B(<P,t):B(G,X)-+B(G',X')

be defined as in 5.2. Then the following three statements hold, (a) B(<p, t) is a morphism

of abelian topological monoids, (b) If <p and t are proclusions, then so is B(<p, </<).

(c) If<p and t ore injective closed maps, then so is B(<p, $)■

Proof, (a) By 5.2 we need only show B(<p, t) is continuous. But for each n = 0

we have a commutative diagram

(<P x tT
(G x Xf > (G' x X'Y

(6.8) P-n Pn

&Á9, t)
Bn(G, X)      "W r> > Bn(G', X')

where Bn(<p, t), the restriction of B(<p, t), must therefore be continuous. Thus the

result follows from 6.3. (b) By 6.3 it suffices to show that each Bn(<p, t) is a pro-

clusion. But this is seen by looking at (6.8), where (<pxt)n must be a proclusion by

2.2. (c) It suffices to show that each Bn(q>, t) is a closed map. We do this by applying

2.8 to the maps

u.                            Bn(w, </i)                              u„
(G x X)n-> Bn(G, X) — > Bn(G', X') <-(G' x X')n.

For each collection a of pairwise disjoint subsets of {1,..., n}, let Y„ consist of

those elements ((g[, x'y),..., (g'n, x'n)) of (G' x A")" satisfying the following two

conditions. (1) For each Je a, x'¡=x'k for ally, keJ, and Z,e/¿?í=0. (2) If

je{l,...,n}-{Ja,

then g] e <pG and x) e tX. Then we let pa: Ya->(Gx X)n be the map which acts

on ((g'y, x'y),..., (g'n, x'n)) by replacing (g'h x'¡) by (0, *) ifje\Ja and by replacing

(g'j, x'j) by (<p~1g'„ t'^x'i) otherwise. One can check that the hypotheses of 2.8 are

satisfied.

6.9. Corollary. If si and 3 are the categories of abelian topological monoids

and of based spaces, respectively, then B(-, ■) is a bifunctor si x3 ->si, covariant

in both variables.

6.10. Proposition. If </»t: X -* A" is a based homotopy and G is an abelian

topological monoid, then (i/r()* : B(G, X) -*■ B(G, A") is a homotopy.

The proof is similar to that of 6.7(a).

6.11. Corollary. If X and A" have the same based homotopy type, then so do

B(G, X) and B(G, A"). In particular, if X is contractible, then so is B(G, X).
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For the last proposition in this section it is convenient to exhibit B(G, X)

directly as a quotient space. For any space Y, let M( Y) be the topological sum of

the spaces Yn, n=0, 1,2,_Let

(6.12) M(G x X) —> B(G, X)

be the map whose restriction to (G x X)n is pn followed by the inclusion Bn(G, X) ->

B(G, X). It is trivial to check that p is a proclusion.

6.13. Proposition. If G is an abelian topological monoid and X and Y are based

spaces, then B(G, XaY) and B(B(G, X), Y) are isomorphic as abelian topological

monoids.

Proof. Consider the following diagram, where all vertical arrows represent the

obvious proclusions (three of them involving (6.12)):

M(G xIxF)^ M(M(G x X) x Y)

Y Y

M(G x(X a  Y))      M(B(G, X) x Y)

B(G, X a  Y) ¡£± B(B(G, X), Y).
<A

Here <p is the obvious algebraic morphism well defined by 9>(2¡ g¡(*i A J¡)) =

2i (g¡*¡)ji, and </- is defined by 0(2, (2i gnXir)yi) = J.i,jgii(xiiAyj). One checks that

cp and t/i are mutual inverses. They are "covered" in the diagram by y and <¡i,

respectively, defined by

<?>((gl, *1, yi), • • •, (gn, Xn, }'n)) = (((gl, *l), Jl), • • ■, ((gn, *n), Jn))

and

<£((((gll, *ll), • • -, (gmil, Xmil)), yù, ■■■, (((gin, Xxn), ■■■, (gmnn, *m,,n)), Jn))

= ((gll, *11> Jl), • • •, (gmil> Xmix, yx), . . ., (gin, Xln, Jn), • • •, (gmnn, ^mnn, Jn))-

Hence cp and >/> are continuous, and the proof is complete.

7. CW structure on B(G, X) for G discrete abelian and X triangulable. Through-

out this section let G be a discrete abelian monoid and let X be a based simplicial

complex, with the weak topology. Let us order the vertices of X so that we can

handle products. We will show that these data determine a CW structure on

B(G, X). The proof is similar to that of an analogous theorem in [4].

In the following, simplex will mean open simplex and cell will mean open cell.

Let Ar denote the standard closed r-simplex {(A0,..., A,) : AtS>0, 2t \= !}•

It is convenient to identify Gn x Xn with (G x X)n in M(G x X) under the obvious

homeomorphism. Give each «-fold product Xn the standard simplicial structure of
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a product [5, pp. 66-70]. Since G is discrete, Gnx Xn is then a simplicial complex

with Simplexes of the form gxo, where g e Gn and o is a simplex of Xn. Hence

M(G x X) has a simplicial structure. The idea is to carry this over to a CW structure

on B(G, X) by the proclusion p. (see (6.12)).

The r-simplexes of the n-fold product Xn are in bijective correspondence with

(r+l)xn matrices

(V0i     »02      ■■■      V0n\

(7.1) / -
»11      »12

^»rl       »r2

of vertices of X satisfying the two conditions :

(A) the rows of J are distinct;

(B) for each j= 1,..., n, the vertices in the y'th column satisfy v0¡S • ■ ■ SvTi

and span a simplex of X.

If a, denotes the r-simplex of Xn corresponding to /, then the vertices of a, are

just the rows of J and the linear structure of a, is given by the characteristic map

Ar—>-ö, sending (A0, ...,Ar) to (2¡ A,i>u, ..., 2¡ A,t'(n). Thus the r-simplexes of

G" x Xn are of the form g x o-, where g e Gn and J is as above.

Call a matrix J of the form (7.1) satisfying (A) and (B) nondegenerate if it also

satisfies the following two conditions. :

(C) the columns of / are distinct ;

(D) no column of J has all entries equal to the basepoint of X.

7.2. Lemma. Let J=(vu) andJ' = (v\,) be nondegenerate matrices of size (r+ 1) xn

and (r' + l) x n', respectively, and let g e (G—0)n, g' e (G—0)"'. Suppose given points

A 6 int Ar and A' e int Ar' such that

gi(Z \Pn) ©• • • © gn(% A,i>,n) - g;(2 Kv'aj ©• • • ©s;.(2 *&»')

in B(G, X). Then A = A' and p(gxo-j) = p.(g' xo>).

Proof. From conditions (B) and (C) and the fact that A e int Ar, one easily

sees that 2¡ A,i;(1,..., 2i ^¡»¡n represent n distinct points of X. From (B), (D), and

A e int Ar, it follows that none of these n points is the base point of X. A similar

conclusion is made about the primed case. Since none of the g¡ or g[ are 0, it

follows then from the equation of the hypothesis that n = ri and that there is a

permutation <p of {l,...,n} such that (g'¡, 2¡ aÍ»h)=(cTo>o> 2í Vw») f°r eacn

j= 1,..., n. In particular,

(7.3) I 2 Kv'n, • • -, 2 ^"»nl  -  12 VW)' • • •» 2 Ai»i«.(n) 1



286 M. C. McCORD [December

in X", which means that the Simplexes of X71 corresponding to the matrices (v'tj)

and (vt9(iy) have a point in common. Hence these simplexes are the same and their

matrices are the same: (v'lf)=(vi9(fí). It follows then from equation (7.3) that A = A'.

Finally, note that for any a e int Ar, we have now the equations in B(G, X):

gl\T «All  ©' • -©gni2 "f"«»)   = ^(1)Í2 "i"»™) ©' • -©^(n)(2 Wmo)

= g;Í2 ̂i) ©• ■•®gnŒ «*<■)■

This implies that /x(g x cj) = p(g' x a}.), and the proof is complete.

Let us call a simplex gxa} of M(Gx X) nondegenerate if g e (G—0)n and / is

nondegenerate. We wish to apply to our situation the following general lemma.

7.4. Lemma. Let p: M -> B be a proclusion, where M is a CW-complex and B is a

topological space. Suppose there exists a collection of cells of M called the non-

degenerate cells satisfying the following three conditions.

(i) p is infective on each nondegenerate cell.

(ii) The images under p of any two nondegenerate cells are either disjoint or equal.

(iii) Given any cell e of M, there exists a nondegenerate cell e' of no greater

dimension and a map f of (ë, e) onto (ë', e') such that pf(x) = p(x)for all x in ë.

Then the sets p(e), where e varies over the nondegenerate cells of M, form a CW

decomposition of B. For a characteristic map for p(e) we can take the composite of p

with a characteristic map for e.

The proof of this lemma is an easy generalization of the proof of Milnor's

Lemma 3.2 in [8], and will therefore be omitted.

Condition (i) of this lemma is verified immediately for our situation (for the

proclusion p: M(Gx X)-> B(G, X)) by applying Lemma 7.2 with (g, J) = (g', J')

and taking the first part of the conclusion (that A=A'). Condition (ii) follows

immediately from Lemma 7.2 with the second part of the conclusion.

To verify condition (iii), let g x o} be an arbitrary simplex of G" x Xn, where / is

a matrix of the form (7.1) satisfying (A) and (B). If gx a} is already nondegenerate,

we just take/to be the identity on g x o}. Otherwise we obtain from g x a, a "con-

tracted" nondegenerate simplex by applying successively to the pair (g,J) the

following four operations, each of which is defined for any such pair (g, /).

(1) Omit from J any column, all of whose entries are the basepoint of X, and

omit from g the corresponding g/s.

(2) " Collecting g coefficients. " If the first column ofJ coincides with some later

columns, then omit these later columns, and omit the corresponding entries of g.

Replace however gx by its sum with these later entries. Then look at the new second

column and continue the process.

(3) Omit any zero entries of g and omit the corresponding columns of/.
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(4) "Omitting superfluous rows." If the first row ofj coincides with some later

rows, omit these later rows. Then look at the new second row and continue the

process. This operation has no effect on g.

Let (g, J') be the result of applying the first three operations to our original

(g, J), J' = (v'i,) being of size (r+1) x n', n' Sn. Let (g', J") be the result of applying

operation (4) to (g',J'), J" being of size (r'-f-l)xn', r'Sr. Then it is clear that

g' x o> is a nondegenerate simplex. We define a linear map f: gxdj->g' x ó> by

the equation

f\Z> (2 XiVil.2 XiVl»)) = U'' Í2 Aft,'i' • • •' 2 Vi»-M

for AeAr. Clearly f(gxo})=g' xo-r, and from the way (g',J") was obtained,

pf(u)=p.(u) for all uegxâj.

Thus we can apply Lemma 7.4, and we know that the sets p.(g x of), where gxa}

varies over the nondegenerate simplexes of M(G x X), form a CW decomposition

of B(G, X). For each such cell p.(g x oj) with J=(vtj) of size (r+ 1) x n, we can take

as characteristic map the map

<p: Ar -> p.(gx a,)

given by

9>(A0, . . ., K)  -  e?l( 2 A'r'l)   ©• • • © e?»( 2 A*D««)-

7.6. Remark. If G is a countable discrete monoid and X is a countable simplicial

complex, then B(G, X) is clearly a countable CW complex. Hence the product

B(G, X) x B(G, X) is the same as the cartesian product. Therefore in this case

B(G, X) is a topological monoid in the usual sense.

8. The principal bundle B(G, A) -> B(G, X) -> B\G, X/A). In the interests of

(a) possible generalizations of the main theorem (8.8), and (b) the relations of §9

to the present section, we are going to start off more generally than we will end up.

Suppose G is an abelian topological monoid and (A", A) is a closed pair of based

spaces. Then if i: A -> X is the inclusion and p: A"-> X/A is the proclusion, we

have the morphisms

(8.1) B(G, A) -% B(G, X) -£î* B(G, X/A).

By 6.7, i* is a closed imbedding and/>* is a proclusion.

We can use it and the operation in B(G, X) to define an action of B(G, A) on

B(G,X):

(8.2) B(G, X) x B(G, A) -^ B(G, X),       <p(u, v) = u © imv.

8.3. Lemma. p% induces B(G, X)/B(G, A)xB(G, X/A).
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Proof. For each u e B(G, X), let [u] e B(G, X)/B(G, A) denote the orbit of u.

Since p* is a proclusion, it suffices to show that [i/] = [k'] if and only if pmu=p*u'.

The only if part is implied by pA* = 0. Conversely, suppose p*u=pifu'. Write

u = «o © i*v where u0(x) = 0 for x e A and v e B(G, A). Write u = u'0 © /,»' similarly.

Then pnu<s=p*u=pifu=p*u'Q. Hence w0 = «ó, and [u] = [w0] = K] = [«']•

Now for each w^O define a B(G, A)-invariant, closed subspace £n of i?(G, X) by

(8.4) En = />; ̂ „(G, A-//1) = 5n(G, X) © ¿#5(G, A).

We also write £_i= 0. Note that 5(G, Z) has the topology of the union of the

£„ since it has the topology of the union of the subspaces Bn(G, X).

8.5. Lemma. An element gxXx ©• • ©gn^n of B„(G, X) is also in En~x if and

only if (a) some g,=0, or (b) some x¡ e A, or (c) x, = xkfor some j^k.

8.6. Lemma. For each n^O the action map cp defines a relative homeomorphism

(Bn(G, X), Bn(G, X) n £n.i) x B(G, A) -> (£n, £n_!).

Proof. One can use 8.5 to check that cp defines a map of pairs as indicated, and

that 95 maps (Bn(G, X)-Bn(G, X) n £n_j) x B(G, A) bijectively to £n-£n_j. To

show that <p maps Bn(G, X) x B(G, A) proclusively to £„, it suffices to show that cp

maps Bn(G, X)xBm(G, A) proclusively to En n B„+m(G, X) for each m^O. For

this, it suffices to show that the first map in the following diagram is a proclusion :

(G x Xy x(Gx AT   y°(^X^, £n n Bn + m(G, X) c: Bn + m(G, X)

J^(GxX)»+».

But 2.8 can be applied to these maps. We omit the details, which are similar to

those of 6.7(c).

8.7. Lemma. If G is discrete abelian monoid and (X, A) is a based triangulable

pair, then for each n^O, (Bn(G, X), Bn(G, X) n En-x) is an NDR pair.

Proof. By the preceding section, B(G, X) has a CW structure. It is easy to see

that Bn(G, X) and Bn(G, X) r> En-x (refer to 8.5) are subcomplexes. Hence the

result.

If, in addition to the hypotheses of 8.7, G is a group, then by 8.6 and 8.7 we can

apply Theorem 4.2 to B(G, X). This, in combination with 8.3, gives:

8.8. Theorem. If G is a discrete abelian group and (X, A) is a based triangulable

pair, then (B(G, X), p*, B(G, X/A)) is a numerable principal B(G, Ay-bundle.

8.9. Remark. We used the assumption that G is discrete and (X, A) is triangulable

at only one point—in showing (8.7) that (Bn(G, X), Bn(G, X) n En.x) is an NDR

pair. The rest of the proof works for G an arbitrary abelian topological group and

(X, A) an arbitrary closed based pair. It would be nice to get the conclusion of
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8.7—or at least of the theorem—under weaker hypotheses. One ought to be able to

get a quasifibration theorem too, for the monoid case.

9. Classifying spaces. To begin, suppose G is a monoid (not necessarily abelian).

Then by 5.2(b) the inclusion 5° ->/ and the quotient map /-»■ S1, tr-*l, induce

morphisms of monoids

(9.1) B(G, 5°) —> B(G, I) -?-+ B(G, S1).

Since G is isomorphic to B(G, S°) under the correspondence gi->gl, it is con-

venient to replace B(G, S°) by G, and the sequence (9.1) becomes

(9.2) G -Í-». B(G, I) -^> B(G, S1)

where i(g)=gl.

Now suppose G is a topological monoid. For each n = 0 define a diagram

G«xAn

(9.3) An \"

BIG, I)      Pn   > Bn(G, S1)

as follows: An is the subspace of the unit cube /" consisting of all (ty,..., f„) with

tyS---Stn; "»(¿Ti.. ..,£„, 'i,..., O-fi'i ©• - ■ ® gntn\ Pn. ¡s the restriction of/?;

i'n=/'n ° "n- Give Bn(G, I) and ¿?n(G, S1) the quotient topologies from vn and vn,

respectively. Note that then pn is also proclusive.

9.4. Lemma. For each n>0, and for X=I or S1, Bn.y(G, X) is a closed subspace

ofBn(G, X).

The proof can be based on 2.8, and is analogous to 6.2, but simpler. Because of

the structure of A„, one can replace all the sets Y¡, Ykl of the proof of 6.2 by a

singly indexed sequence of subsets of G" x A„.

9.5. Definition. If G is a topological monoid and X=I or S1, then B(G, X)

shall have the topology of the union of the expanding sequence of spaces Bn(G, X),

where Bn(G, X) has the quotient topology from (9.3).

9.6. Proposition. For G and X as in 9.5, B(G, X) is compactly generated.

Proof. This is analogous to 6.5. We prove by induction on n that Bn(G, X) is

compactly generated. For the inductive step we use the fact (easily checked) that vn

defines a relative homeomorphism

(G" x An, v~1Bn.y(G, I)) -> (Bn(G, I), Bn.y(G, I)),

with a similar statement for vn and S1.
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9.7. Remark. B(G, I) and B(G, S1) have a monoid structure, but we do not

claim it is continuous; see 9.19. However, if G is abelian, then by 9.18 and 6.6

this is true.

The following three propositions are analogous to (special cases of) 6.7 and 6.10,

and are easily proved.

9.8. Proposition (see (9.2)). i: G -► B(G, I) is a closed imbedding and

p:B(G,I)-^B(G,S1)
is a proclusion.

9.9. Proposition. If cp: G -> G' is a morphism of topological monoids and X=I

or S1, then <p*: B(G, X) -*■ B(G', X) (defined in §5) is continuous.

9.10. Proposition. B(G, I) is contractible, with contracting homotopy

hs:B(G,I)-+B(G,I)

given by

K(gxh ©• • • © gn'n) = gl(s'l) ©• • • © gn(stn)-

Now we wish to imitate §8. The pair (X, A) is now (/, S°) but the monoid G may

not be abelian. Nevertheless, a good deal of the set-theoretic and algebraic steps

of §8 are still valid. Consequently we find it safe to omit proofs where the topological

modifications are obvious.

Under the replacement GxB(G, S°), the action (8.2) becomes

(9.11) B(G,I)xG-^B(G,I),       cp(u,g) = u®gl.

We cannot now rely on the continuity of the operation © in B(G, I) to know that

<p is continuous, but this can be proved separately as follows: It suffices to show

that the restriction of <p to Bn(G, I) x G -*- Bn + i(G, /) is continuous for each n ^ 0.

But this map can be put into the following diagram

GnxAnxG —>Gn+1xAn + 1

"nxid vn+1

Y Y

Bn(G,I)xG->Bn+x(G,I)

where the upper map sends (gx,.. .,gm tlt..., tn, g) to (gi,..., g„, g, tlt..., t„, 1).

9.12. Proposition (cf. 8.3). p induces a homeomorphism from the orbit space

B(G, DIG onto B(G, S1).

Corresponding to (8.4), define closed G-subspaces En of B(G, I) to be

£n = p-1Bn(G, S1) = Bn(G, I) © iG.

Note that now it happens that £n_i is contained in Bn(G, I).
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9.13. Lemma (cf. 8.5). An element gyty ©• ■ • © gntn of Bn(G, I) is in £n_i if and

only if (a) some gt = e, or (b) some t¡ = 0 or 1, or (c) tj = tkfor some j+k.

9.14. Lemma (cf. 8.6). For each n^O the action map <p defines a relative homeo-

morphism

(Bn(G,I),En.y)xG^(En,En.y).

The proof that <p maps Bn(G, I)xG proclusively to £n is simpler than the

corresponding part of 8.6. One can easily apply 2.8 to the maps

W°(v nXÍd) V. + y
G«xA„xG-!-^-'-*En^Bn + 1(G,I)<-G*+1xAn + 1.

9.15. Lemma. If G is a nicely based topological monoid, then for each n ̂  0,

(Bn(G, I), £„_,) is an NDR pair.

Proof. For n=0 we have (B0(G, I), £_y) = ({e}, 0). Suppose, inductively, that

n = 0 and (Bn(G, I), En.y) is an NDR pair. Consider the diagram

(9.16)

t
GnxAnxGxI->Gn + 1xAn + 1

vn x id x id

t
Bn(G,I)xGxI->5n + 1(G,/),

where t(gi, ■ ■ -, gn, h,...,t„ g, t) = (gy, ...,gn,g, tyt,..., tnt, t), and where t is

well defined by requiring commutativity. ^ is a proclusion because the other three

maps in the diagram are proclusions. Using 9.13, it is easy to see that t defines a

relative homeomorphism

(Bn(G, I), £„_!) x (G, e) x (I, S°) -> (Bn + 1(G, I), En).

Since all three factors of the product are NDR pairs, the result then follows from

Theorem 6.3 and Lemma 8.4 of [11].

If in addition to the hypothesis of 9.15, G is a topological group, then by 9.14

and 9.15, we can apply Theorem 4.2 to B(G, I). This, in combination with 9.12

and 9.10, gives:

9.17. Theorem (cf. [7], [12]). If G is a nicely based topological group, then

(B(G,I),p,B(G,S1))

is a numerable principal G-bundle, and B(G, I) is contractible. Hence B(G, S1) is a

classifying space for G.

9.18. Theorem. If G is an abelian topological monoid and X—l or S\ then the

topology on B(G, X) defined in 9.5 agrees with the topology defined in 6.3.

Proof. By 6.7(b) and 9.8, the same function B(G, I) -> B(G, S1) is a proclusion

for both topologizations. Hence it suffices to prove the result for B(G, I). For this
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it suffices to show that for each n ä 0, Bn(G, I) gets the same quotient topology by

both methods. Let B'¿(G, I) and Bl(G, I) denote Bn(G, I) with the topologies from

pn and vn respectively, and let i: Bl(G, I) -*■ Ä„(G, /) be the identity function. It is

convenient to think of pn as being defined on G" x /", through the obvious homeo-

morphism (Gx I)nxGn xI". Then clearly ;' is continuous, since G"x A„cG" xln.

To see that i is closed, we apply 2.8 to the maps (vn, i, pn). For each ae Sn (see

(6.4)), let I% = {tel" : t-aeAn}. Then, since G is abelian, we get commutative

diagrams

Gn x An J^- Gnxlna<z Gnx I"

"n P-n

Bl(G, I)-'--y Bn(G, I)

where pa(g, t) = (ga, ta). It is easy to check the hypotheses of 2.8, so that / is

closed and the proof is complete.

9.19. Remarks. In treating B(G, X) in §6 we assumed G to be abelian because

some of the proofs depend on that assumption. But if G is an arbitrary topological

monoid and A" is a based space, the functions pn of (6.1) are still defined and could

be used to topologize B(G, X). So it makes sense to ask whether it is really necessary

to assume that G is abelian in Theorem 9.18. The following example shows that it

is. Let G he a discrete, nonabelian group. Suppose that the topology on B(G, S1)

defined from the pn agrees with that defined in the present section. Then the proof

of 6.7 still applies to show that B(G, S1) is a topological monoid. Hence ttxB(G, S1)

is abelian. But by 9.17, ttxB(G, S1)'Ztt0G'zG, which is nonabelian. Incidentally,

the first paragraph of the proof of 9.18 then shows that the topology on B(G, S1)

of the present section is strictly larger than that defined by the pn.

10. The canonical //-isomorphisms B(G, X) -> Q.B(G, SX). If G is a topological

monoid, we give B(G, S1) the topology of §9, and we define a map

(10.1) G -1+ QB(G, S1),       ri(g)(t) = g(T^7).

10.2. Theorem. If G is a nicely based topological group then the map (10.1) is an

H-isomorphism. (It is a morphism of H-spaces and also is a based homotopy equiva-

lence.)

Proof. Let Ep be the mapping track (§3) of the projection p : B(G, I) -> B(G, S1)

and consider the diagram

QBÍG.S1)-J-->E,
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where k(g) = (gl, *) and where j is as in 3.1. By 9.8, k is essentially the standard

inclusion of the fiber of p into £„. Since/? is a based fibration by 9.17, k is a based

homotopy equivalence. Passing to based homotopy classes, we remark that it is a

standard fact that [Ar] ~x[_/'] is a morphism of//-spaces. (This works for any numer-

able principal G-bundle.) Since B(G, I) is contractible, [j] is invertible by 3.1, so

that [¿]_1l/] is an //-isomorphism. If we can show that [/][??] = [k], we will be

finished, for then M = l/]-1[A:] is an //-isomorphism. But to see that k~j ° r¡ we

define a homotopy ks: G -> £p by ks(g) = (g(l —s), (r¡(g))s), where

(ri(g)Y(t) = rl(g)(st) = g(l-st).

If G is an abelian topological monoid and A" is a based space, then we give

B(G, X) the topology of §6, and we define a map

(10.3)

A(*i*i ©•

B(G, X) —> ÜB(G, SX),

■®gnXn)(t) = gl(t  A  *i) ©• ••©£„(/ A  *»).

10.4. Theorem. If G is an abelian topological group, X is a based space, and

B(G, X) is nicely based, then the map (10.3) is an H-isomorphism.

Proof. Let r: SA"->- A" a S1 be the homeomorphism given by

t(í a x) = x a l-t.

Consider the diagram

B(G, X)-

QB(B(G, X), S1)
Q<p

C1B(G, SX)

Qr*

ÙB(G, X a S1),

where r¡ is the map of (10.1) and <p is the homeomorphism of 6.13. The diagram is

easily seen to commute. By 10.2 and 9.18, r¡ is an //-isomorphism. But ÍÍ95 and Qt*

are //-isomorphisms since <p and t* are homeomorphisms. Thus n is the composite

of three //-isomorphisms.

10.5. Corollary. If G is a discrete abelian group and X is a based space having

the homotopy type of a CW complex, then the map (10.3) is an H-isomorphism.

Proof. By [9] there exists a based homotopy equivalence /: X ■

is triangulable. We get a commutative diagram

A", where A"

B(G, X)

\u
£IB(G, SX)

û(iO,

B(G, A") —* QB(G, SX').
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By §7, B(G, A") is nicely based, so by 10.4 the lower A is an //-isomorphism. By 6.7

and 6.10 the two vertical maps are also //-isomorphisms; hence the result.

We remark that for this corollary one can also use 8.8 as a basis of proof. The

next corollary is obtained inductively, beginning with the isomorphism

B(G, S°) X G.

10.6. Corollary. If G is a discrete abelian group and nTzQ, then B(G, Sn) is an

Eilenberg-MacLane space K(G, n).

11. The homology-cohomology modules [A', B(G, Y)]. Throughout this section

let F be a fixed commutative ring with unit. All modules and their tensor products

are taken over R. A topological module M is an abelian topological group which is

also a module such that the multiplication R x M -> M is continuous. If AT is a

based space, then [X, M] has an obvious module structure.

If G is a topological module and y is a based space, then B(G, Y) is a topological

module: if r e R and u e B(G, Y) then ru is defined by (r■ u)(y) — r■ u(y). Note

then that r-(g^i ©• • • © g„j„) = (rgx)yx ©• ■ • © i/gJjV From this and 6.3 it is

obvious that /^-multiplication is continuous.

We are interested in the modules [A*, B(G, Y)] where X and Y are based spaces

and G is a discrete module. It follows from 6.9 that [•,£(•, •)] 's a trifunctor,

contravariant in the first variable and covariant in the second and third. Trivially,

homotopic based maps in the first variable induce equal homomorphisms. By 6.10

a similar statement holds for the third variable.

We define the suspension morphism o to be the composite

(11.1) c: [X, B(G, Y)] -^ [X, Í1B(G, SY)] s [SX, B(G, SY)],

where A is the canonical map (10.3).

11.2. Proposition, o is a morphism of modules. If Y has the homotopy type of a

CW complex, then a is an isomorphism.

Proof. The first statement is easily seen from the following property of A: if

ru r2 e R, ult u2 e B(G, Y), and / € /, then the equation

(h(rx-ux ®r2-u2))(t) = rr(A(Ml)(f)) ©r2(A(«s)(0)

holds in the module B(G, SY). The second statement follows from 10.5.

The following proposition describes an exactness property of the functor

[X, B(G, ■)], where A" is a fixed based space and G is a fixed (discrete) module.

11.3. Proposition. If(Y, Y') is a based pair having the homotopy type of a CW

pair, then the sequence

[X, B(G, Y')) -* [X, B(G, Y)] -> [X, B(G, Y/Y')]
is exact.
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Proof. By [9] and 6.10 we may assume that (Y, Y') is triangulable. Then, by

8.8, B(G, Y') -+ B(G, Y) -*■ B(G, Y/ Y') is a based fibration, whence the result.

One could also state a dual, somewhat more generally valid, exactness property

for the functor [•, B(G, Y)].

For sufficiently nice X and Y one can describe the modules [A', B(G, Y)] in

terms of the (singular) cohomology of A'and the homology of Y. First, using 11.2

and 11.3, and proceeding much as in §6 of Dold and Thom [4], one gets the

following theorem.

11.4. Theorem. If Y isa based space having the homotopy type ofaCW complex,

then [Sn, B(G, Y)] is isomorphic to the reduced homology module fín(Y; G).

We comment that the coefficient module is G since B(G, S0)zzG. Next, using

11.4 as a description of the homotopy groups of B(G, Y) and applying Moore's

theorem [2] or [4] that a topological abelian group has the homotopy type of a

product of Eilenberg-MacLane spaces, one gets the following theorem. It can be

viewed as a generalization of a theorem of Burghelea and Deleanu [1].

11.5. Theorem. If X and Y are based spaces having the homotopy type of a CW

complex, then

[X, B(G, Y)] x fl 8\X; Hn(Y; G)).
n = 0

Now we want to show how the construction B(-, •) can be used to define and

treat directly cross product pairings in the homology-cohomology modules

[A", B(G, Y)\.

11.6. Proposition and definition. If G and G' are modules and Y and Y' are

based spaces, then there is a continuous bilinear map

B(G, Y) x B(G', Y') -* B(G ® G', Y a  Y')
given by

(2 &y*> 2 tí?') *-+ 2 (*• ® **)(*A y'¡)-
\  i i I i.l

Proof. It is easy to check that the map is well defined and bilinear. Continuity

can be seen by making a commutative diagram

M(G xY)x M(G' x F) —> M((G ® G') x ( Y a Y'))

P.XLÍ P-

B(G, Y)xB(G', Y')-► B(G ® G', Y A Y'),

where p. is the proclusion of (6.12), and by applying 2.2.

Since the map of 11.6 is bilinear, it can also be viewed as a map

(11.7) B(G, Y) A B(G', Y') -> B(G ® G', Y A Y').
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Given also based spaces X and A", we can now define our generalized cross

product pairing

(11.8) [A", B(G, Y)] x [A", B(G', Y')] -\ [X A A", B(G ® G', Y A Y')]

as the composite of the two functions

[X, B(G, Y)] x [A", B(G', Y')] -► [X A A", 5(G, F) A 5(G', Y')]

-> [A" a A", £(G ® G', Y a Y')],

where the first function sends ([/], [/']) to [/ a /'], and the second is induced by

(11.7).
Bilinearity of (11.8) is straightforward to check. Also associativity, in the obvious

sense, can be seen easily from the (strict!) associativity that (11.7) enjoys.

The product (11.8) is well related to suspension (11.1) through the following

commutative diagram. Let ie [S1, B(R, S1)] be the homotopy class of the map

s h> Is. (It is easy to see from 10.5 that [S1, B(R, S^xR, and i is a generator.)

The diagram is

[X, B(G, Y)]-> [SX, B(G, SY)]

(11.9) tx t*

^                            A I
[S1, B(R, S1)] x [X, B(G, Y)]-> [SX, B(R ® G, SY)],

where the second vertical map is induced by the standard isomorphism /? ® G-+G.

Commutativity is straightforward to check from the definitions.

Before establishing commutativity properties of the product (11.8) we give two

lemmas. The first is elementary and standard. The second one uses the structure of

B(G, X) in an explicit and interesting way.

11.10. Lemma. Let p^2 and let cp: S" -+ Sp be a map that switches two factors

ofS" = S1 a ■ ■ • A S1. Then <p~i/i where

<p(tx A t2 A ■ ■ ■ A tp) = 1-íi A t2 A • • • A tp.

Hence for any based space W, <p*= -id: [Sp, W] -+ [Sp, W].

11.11. Lemma. If<p:Sp-+Spisa map switching two factors and G is a module,

then <p*~ —id: B(G, Sp)-+ B(G, S").

Proof. Let 0 be as in 11.10. Since cp^~ijjt, it suffices to show ^*~ —id. Define

homotopies as, )Ss:/->/ by as(t) = (l — t)s and ßs(t) = (l — t)s+t. Then define a

homotopy hs: B(G, S") -> B(G, Sp) by

Aifefttt A «¡)J = ^(gi&Jti) A M()-gi(Mi) A ud),
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for s, r, e /, gi e G, ut e S" ' K Since

<xs(i) = ft(0   foríeS0,

h, is well defined and continuous. One checks that n0=—id and /^ = </>*. This

completes the proof.

Now suppose we are given based spaces X, A", Y, Y', and modules G, G'. Let

t,: A"A X^- XaX', t2:G®G'->G'® G, and t3: Y a r"-»■ T'A Y be the

twisting morphisms. The general commutativity property for the product (11.8) is

expressed by the commutativity of the following diagram, which is straightforward

to verify from the definitions :

[A", B(G, Y)] x [A", B(G', Y')] -^ [X A A", B(G ® G', Y A  T')]

(11.12) switch [ru B(t2, t3)]

[A", 5(G', T')] x [A-, B(G, Y)] —► [A" A X, B(G' ® G, Y' A 7)].

Now consider the special case A"=5m, A" = S\ so that we are dealing with

homology. Then we identify Xa X' = Sm + n = A" A X. We write rx: 5m + n -> Sm+n

as the composition of ™ switches of S1 factors, and apply 11.10 to each of these.

The result is that in (11.12) we can replace [r,, B(t2, t3)] by (—l)mn[id, B(t2, t3)].

Then (11.12) expresses the standard skew commutativity of the homology cross

product.

Similarly, consider the special case Y=Sm, Y' = Sn, so that we are dealing with

cohomology. An analogous application of 11.11 mn times allows us to replace

[ry, B(t2, t3)] in (11.12) by (-l)mn[ry, B(t2, id)]. Then (11.12) expresses the

standard skew commutativity of the cohomology cross product.
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