The uniqueness of the Cauchy problem for partial differential equations which may have multiple characteristics
HTML articles powered by AMS MathViewer
- by Peter M. Goorjian
- Trans. Amer. Math. Soc. 146 (1969), 493-509
- DOI: https://doi.org/10.1090/S0002-9947-1969-0252832-8
- PDF | Request permission
References
- Paul J. Cohen, The nonuniqueness of the Cauchy problem, Office of Naval Research Technical Report No. 93, Applied Math. and Stat. Lab., Stanford Univ., 1960.
- Peter M. Goorjian, The uniqueness of the Cauchy problem for partial differential equations which may have multiple characteristics, Trans. Amer. Math. Soc. 146 (1969), 493–509. MR 252832, DOI 10.1090/S0002-9947-1969-0252832-8
- Lars Hörmander, On the uniqueness of the Cauchy problem, Math. Scand. 6 (1958), 213–225. MR 104924, DOI 10.7146/math.scand.a-10546 B. Malgrange, Sur l’unicité du problème de Cauchy, d’après A. P. Calderón, Séminaire Bourbaki, 1959, p. 178.
- Louis Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math. 10 (1957), 89–105. MR 86232, DOI 10.1002/cpa.3160100104
- A. Pliś, A smooth linear elliptic differential equation without any solution in a sphere, Comm. Pure Appl. Math. 14 (1961), 599–617. MR 136846, DOI 10.1002/cpa.3160140331
- M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81–91. MR 113030, DOI 10.1090/S0002-9947-1960-0113030-3
- François Trèves, Relations de domination entre opérateurs différentiels, Acta Math. 101 (1959), 1–139 (French). MR 125322, DOI 10.1007/BF02559542
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 146 (1969), 493-509
- MSC: Primary 35.37
- DOI: https://doi.org/10.1090/S0002-9947-1969-0252832-8
- MathSciNet review: 0252832