Structures determined by prime ideals of rings of functions
HTML articles powered by AMS MathViewer
- by Richard G. Montgomery
- Trans. Amer. Math. Soc. 147 (1970), 367-380
- DOI: https://doi.org/10.1090/S0002-9947-1970-0256174-4
- PDF | Request permission
References
- N. Bourbaki, Éléments de mathématiques. Fasc. 27: Algèbre commutative. Chapitre 2: Localisation, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- W. W. Comfort and Stelios Negrepontis, Extending continuous functions on $X\times Y$ to subsets of $\beta X\times \beta Y$, Fund. Math. 59 (1966), 1–12. MR 200896, DOI 10.4064/fm-59-1-1-12
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Leonard Gillman and Meyer Jerison, Quotient fields of residue class rings of function rings, Illinois J. Math. 4 (1960), 425–436. MR 124727 A. W. Hager, $C$-, ${C^ \ast }$-, and $z$-embedding, (to appear).
- M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110–130. MR 194880, DOI 10.1090/S0002-9947-1965-0194880-9
- M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961/62), 73–94. MR 133698, DOI 10.4064/fm-50-1-73-94
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Joseph Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. (3) 13 (1963), 31–50. MR 143837, DOI 10.1112/plms/s3-13.1.31
- Joseph Kist, Compact spaces of minimal prime ideals, Math. Z. 111 (1969), 151–158. MR 245566, DOI 10.1007/BF01111196
- Mark Mandelker, Prime $z$-ideal structure of $C$(R), Fund. Math. 63 (1968), 145–166. MR 234272, DOI 10.4064/fm-63-2-145-166
- Mark Mandelker, Prime ideal structure of rings of bounded continuous functions, Proc. Amer. Math. Soc. 19 (1968), 1432–1438. MR 231206, DOI 10.1090/S0002-9939-1968-0231206-4
- Mark Mandelker, $F^{\prime }$-spaces and $z$-embedded subspaces, Pacific J. Math. 28 (1969), 615–621. MR 240782 R. Montgomery, Structures determined by the prime ideals of rings of continuous functions, Dissertation, Clark University, Worcester, Mass., 1969.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 147 (1970), 367-380
- MSC: Primary 46.55; Secondary 16.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0256174-4
- MathSciNet review: 0256174