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STRUCTURES DETERMINED BY PRIME

IDEALS OF RINGS OF FUNCTIONS

BY

RICHARD G. MONTGOMERYC)

Introduction. Let 3t and S~z)s respectively denote the category of commutative

rings with unity and the category of completely regular Hausdorff spaces; also, ^

denotes the full-subcategory of ¡T^ whose objects are compact, and %>TD the

full-subcategory of ^ whose objects are totally-disconnected. The collection of

prime ideals of A e ¿% is the underlying set for an object KA e <ßTD and K is contra-

variantly functorial. If C denotes the contravariant functor which assigns to each

Ie5¡¡ the ring C{X) of real-valued continuous functions on X, then the resulting

functor Kc is the domain of a natural transformation 8: Kc-> ß, where ß denotes

the Stone-Cech reflection of &~3i into &. The prime z-ideals of C{X) also furnish

such a space IX, functor £ and natural transformation 8: £ -» ß. In the appropriate

category, £ fills in a diagram which exhibits ß as a push-out.

Topological properties of KC(X) and l,X are studied and IX is characterized as a

certain compactification of XF, the £-topology on X, which helps establish the

place of t,X between ßXP and ßX.

The above results are applied in an investigation of the continuous and order-

preserved image of £ Y in both of ÇX and ßX arising from/: F—*- X. As one con-

sequence, the prime z-ideal structure and the minimal prime ideal structure

associated with X is illuminated by the corresponding structures associated with

certain subspaces of X; as another, a convenient simplification and unification is

provided for approaching several types of problems found in the literature on

prime ideals of C{X).

1. The functors Kc and £. If A e a?, then KA denotes the collection of prime

ideals of A (which, in our usage, does not include A itself). The following notations

are used for a subset S £ A and a e A: Â{S) = {Pe KA : S £ £}, Â%S) = KA\Â{S),

/J{a) = Â{{a}) and fic{a) = Ác{{a}). One can view KA as a subset of the product space

2A, where 2 = {0, 1} is the two-point discrete space; hereafter KA is endowed

with its topology relative to 2A. Observing that %{a) = ira'~[X'\ n KA and dc{a)

= "<r[0] n KA, it follows that the collection {/¡{a) : as A} <u {ic{a) : a e A} is a
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subbase   for   KA;    moreover,    since   ?t{af) n ... n ${an) = á{{üi, ..., an})   and

Ac{af) c\--- c\ /?c(an) = ic(a1.an), we see that the collection {¿(5) n /fc(a) : 5"

is a finite subset of A and a e A} is a base for Ä^.

If 5 is a subset of A which is not a prime ideal, then S fails to satisfy one of a

finite number of properties such as a e A, b e S implies ab e S; that is, there exist

a,b e A with Se U=-nb~[l] n nab~[0]. Whichever property does not hold for S,

the corresponding U provides a neighborhood of S in 2A which misses KA. Hence,

KA is closed in 2A and KA e ^TD.

The preceding argument clearly applies to commonly encountered collections of

subsets in many concrete categories which are algebraic in nature; for more detail

in this direction see [M3].

KA deserves to be compared to Spec A, the well-known [B] topology whose

underlying set coincides with that of KA. Since Spec A has the collection of &°{a)

{a e A) as a base, it is coarser than KA ; a fact which not only yields the known

compactness of Spec A but also shows that KA = Spec A if and only if every prime

ideal of A is maximal (as this is precisely when Spec A is Hausdorff). Spec is

contravariantly functorial ; specifically, Spec a : Spec B -*■ Spec A is defined by

£M*a*"[£] for a:A-+B in 3ft and £eSpec£. Since Spec a is continuous by

virtue of the equality (Spec a)~[7¿{a)] = A{a{a)), it easily follows that Ka: KB -*■ KA

is also continuous, where Ka pointwise agrees with Spec a. Using the functorial

properties of Spec, we have the following

1.1 Lemma. K is a contravariant functor from 3ft to ^VD.    □

Further relationships between KA and Spec A are found in [M3]; for present

purposes, however, we immediately specialize to the case A = C{X). Henceforth,

an unmodified X carries the assumption that Xe3~3i; also,/: F^ X indicates

that /is a continuous function from Ye&~3i to X e ^3i. Notations not otherwise

defined are found in [GJ].

Since C: ¡T^^-aft is contravariantly functorial, we have the functor

Kc: &~3± -> ^td, specifically, for/: Y^> X and £ e Kcm,

1.2 Kc<n{P) = {geC{X):gofeP}.

Iff: Y^ X and g e C(A'), the obvious equality

1.3/1Z(g)]=Z(go/)

is repeatedly used; in particular, it justifies (b) and (c) of the following proposition.

1.4 Proposition. Kc is a functor from 3~3S¡ to ^TD. Moreover, iff: F—^ X, then:

(a) Knn preserves the ordering of set-inclusion;

(b) [GJ,, 2.2] KCU){P) is a {prime) z-ideal of C{X) ifP is a prime z-ideal of C{ Y) ;

(c) KCU){My) = A7/(y) for y e Y.    D

The space of our major interest is IX, the collection of prime z-ideals of C(A')

topologized relative to KCiXy We let/denote KC(r> restricted to £Fif/: Y-*-X;
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1.4(b) permits us to treat/as/: £F-^ YX. If SzC{X) and ge C{X), then Á{S)

= i{S) n t,X; ÂC{S), A{g) and Âc{g) are similarly defined.

1.5 Proposition. The mappings í:Ih»{I and £: /'*-*■ / define a functor I from

yz± to ^rD. Moreover, iff: Y-> X, then

(a) fis order-preserving;

{b) f{My) = Mf(y) for y eY.    □

2. Some topological properties of IX and 7vcuo. It is straightforward to verify

that the category of £-spaces is coreflective in <^$; specifically, let XP = P{X) be

the set X topologized by taking the collection Z{X) of zero-sets of X as a base, and

let fP = £(/): FP-> IV pointwise agree with/: F-> X Then ZP is a £-space and

the obvious map px: XP -> X is continuous; in fact, p = {px}Xer3i¡ is the natural

transformation from the coreflection functor £ to I3i, the identity functor on

3~&. Moreover,/, is the unique continuous function YP -*■ XP with the property

Px°fp=f°Py-
Note that since Z{X) is closed under finite (even countable) intersections, the

collection {H9y. g, h e C{X)} is a base for IX, where HQ<h = â{g) n /fc(/i).

2.1 Theorem. £Zm a compactification of XP. Specifically, the map vx: XP^ £Z

defined by x i-> Af * (x e AV) is a homeomorphlsm onto the collection JÍ ¥{X) of fixed

maximal ideals which is dense in IX.

Proof. Since Z{X) is a base for the space XP which is coarser than X and

vx"[Hg,h\=Z{g) n coz {h), it follows that the one-to-one correspondence vx of

XP onto JiF{X) is continuous; it is also open as vx[Z{g)]=d{g) n ^#F(A'). More-

over, if 0 ¥=Hg^, then Z(g)£Z(/i) and Mx e 775 „ for each x e Z{g)\Z{h).    □

Let/: F^ X Since vy: FPs^i-(F) is dense in £F, 1.5(b) shows that/is the

unique extension of /» to £ F; consequently, we sometimes refer to / as the £-

extension off to £F. If F is a £-space, then £F=ATcm = /3F; also, certain Stone-

extensions are £-extensions and hence have explicit (1.2) representations. One such

extension is singled out in the following proposition. Henceforth the notation /

will be reserved for the Stone-extension off: Y -*■ X.

2.2 Proposition. If f: Y^X, then f°vY=vx°fP; that is, v={vx}Xeyai is a

natural transformation from P to £. Moreover, vx =px ; hence,

vx{M) = {gsC{X):Z{g)eZ[M]}

for M e ßXP, and vx{Mf) = vx{M2) if and only ifZ{X) n Z\MX\ =Z{X) n Z[M2].

Proof. The first statement follows from 1.5(b); the second holds as vx and px

each map lXP=ßXP into IX and agree on dense XP.    □

Note that vx is onto IX(as XP is dense in IX) and so is a quotient map; in fact,

2.2 shows that £A^ is the quotient of ßXP under the equivalence relation:

Mi~M2o Z[MX] n Z{X) =Z[M2] n Z{X).
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We call a point x e X a zero-set point of .Yif {x} eZ{X). Note that risa zero-set

point of X if and only if x is an isolated point of XP.

A subspace of a £-space is itself a £-space [GJ, 4L] and a compact £-space is

finite [GJ, 4K]. It follows that a £-space is locally compact if and only if it is

discrete; also, it is a-compact if and only if it is countable.

2.3 Corollary.

(a) XP is open in ÍX if and only if either one of the following two {equivalent)

conditions holds :

(1) XP is discrete;

(2) every point of X is a zero-set point.

(b) XP is a cozero-set oft,X if and only if either one of the following two {equivalent)

conditions holds:

(1) XP is countable and discrete {that is, XP^N);

(2) X is countable and every point of X is a zero-set point.

(c) The isolated points of £A" are precisely those of XP; that is, P is an isolated

point of IX if and only if P=MX e JiF{X) and x is a zero-set point of X.

Proof. A space F is open in any compactification F if and only if it is locally

compact [GJ, 3.15]; and is a cozero-set of F if and only if it is locally compact and

à-compact (the latter condition from [GJ, 1.10]). Moreover, the isolated points of

Fand F coincide [GJ, 3.15].    D

The isolated points of KCiX) are in one-to-one correspondence with the isolated

points of X. Unfortunately, KC(X) has no convenient dense subset (as does IX)

and, before proceeding, we introduce the function 8X: Kc(X)->ßX defined by

&x{P) —Pi where p is the unique [GJ, 7.15] point in ßX with £ ç M". It is shown in

[HJ, 5.3] that 8X restricted to the minimal prime ideals topologized relative to

Spec C{X) is continuous. The proof used there, however, readily adapts to show

that 6X is continuous when the domain space is Spec C{X); since KC(X) is finer than

Spec C{X), we have the continuity of 8X: KC(X) -> ßX.

2.4 Theorem. A point P of KC(X) is isolated if and only ifP= Mx e J(F{X) and x

is an isolated point of X.

Proof. Following [GJ, 14.2] we call a point in KCiX) an upper ideal if it has an

immediate predecessor (in the ordering of set inclusion). Similarly, it is a lower

ideal if it has an immediate successor.

Now let Q be an isolated point of 7CC(X) and suppose the following two claims

hold:

(a) If Q is not maximal, then it is a lower ideal.

(b) If Q is not minimal, then it is an upper ideal.

Then, if Q $ ¡¡,X, it is neither maximal nor minimal [GJ, 14.7] and so is both an

upper and a lower ideal ((a) and (b)), which is impossible [GJ, 14.18]. Hence,

Q e £A*and so is isolated there; that is, Q = MX <eJíf{X) and x is a zero-set point
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of X (2.3(c)). Since no prime z-ideal is an upper ideal [GJ, 14.10], Q is also a

minimal prime ideal (b); that is, x is a £-point of X. At the same time, being a

zero-set point, x is a Gö-point of X. The conclusion now follows as every £-point

Gó-point is isolated [GJ, 4L]. It remains to establish the claims.

Since {Q} is open in KC(X), there exist gi,...,gn, heC{X) with {Q}

= {£ e KCiX) : gi,..., gn e P and h f £}. In what follows, the symbol <= denotes

proper inclusion.

(a) If Q<=P £ KC{X), then gu ...,gneP and so heP (otherwise P=Q). Let

Q = OqcPP, then Q e KCiX} [GJ, 14.2(a) and 14.3(c)] and is clearly the desired

immediate successor of Q.

(b) Choose Q0CQ and let Q = \^jQo^P = QP; then Q e KC(X-, (as with Q) and we

have only to show that Q¥=Q- Suppose Q=Q, then for each k=l,..., n there is

Pk e KC(X) with gk e Pk and Qo^Pk'- Q- Since the prime ideals containing Q0 form

a chain [GJ, 14.3(c)], we can choose kQ e{l,..., «} with Pk^Pko for every

k= 1,..., n; hence, gu...,gne Pko. But h i Pko (otherwise heQ) and so Pko=Q;

a contradiction. We have now established the necessity of 2.4.

If x is an isolated point of X, then it is a £-point [GJ, 4L] and so {Mx} = Sx"[x]

is open in KC(X).    □

It follows from Stone's Representation Theorem for Boolean rings that a space

A' is in ráTD if and only if X=KA for some A e 8ft ; that is, the contravariant functor

K: 3\? -> (€TD is onto. The following corollary shows that neither 7\c nor £ is onto

'tt'To and so raises the (as yet unsolved) problem of characterizing those Xe^TD

which are a Kcm, or a £ F, for some F e $~3±

2.5 Corollary. Let X have at least two points. Then KC(X), or ÇX, is the

one-point compactification of a discrete space if and only if X is finite.

Proof. The sufficiency is obvious {X is assumed to have at least two points).

(a) Let KCiX) be the one-point compactification of its discrete subspace F with

P* e KC(X) the point-at-infinity. Then each point £ g F is fixed maximal and

properly contains no other prime ideals (2.4); hence, £* is also maximal and A'is

a £-space. But |(8A'\A'| S 1 (recall 8X) and so X is pseudo-compact [GJ, 6J]. The

conclusion now follows as every pseudo-compact £-space is finite [GJ, 4K].

(b) Let £A" be the one-point compactification of its discrete subspace F with

£* e IX the point-at-infinity. Each point £ e F is fixed maximal and 8X{P) is a

zero-set point of X (2.3(c)). If £* is also maximal, then the conclusion follows as

in (a); we claim that this must be the case. Suppose that 8x{P*) = xe X and let

X' = X\{x}; A"# 0 as X has at least two points. Then A'is the one-point com-

pactification {X=8X[£X]) of X' which is a £-space [GJ, 4L]. Moreover, X' is a

cozero-set of X (as Mx e F) and so A" is countable and discrete (as in the proof

of 2.3); that is, X=N*, the one-point compactification of N with x the point-at-

infinity. But then the cardinality of the set of prime z-ideals properly contained in

Mx is |j8rV\TV| [GJ, 14G]; a contradiction as this set contains only £*.    □
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3. Characterizations of £X and its place between ßXP and ßX. Recall that the

Hg¡h = A{g) n Ac{h){g, h e C{X)) form a base for t,X; this base actually distinguishes

I.X from other compactifications of XP.

3.1 Lemma. Let g,heC{X). Then A{g) = cliXZ{g) and Ac{g) = cliXcoz{g);

hence, 77g>iI = cOxZ(g) n clfX coz (A).

Proof. It is easy to verify in general that if A is a dense subset of a topological

space F and U is open in F, then U^clY{A n U) [K, IG]. Apply this to A = XP,

Y=lX, Ui = A{g) and U2 = Ac{g) to obtain one pair of inclusions; the reverse

inclusions are obvious.    □

3.2 Theorem (Characterization of IX). If Y is a compactification of XP and

the collection {clyZ(g) n cly coz {h): g, he C{X)} is a base for Y, then there is a

homeomorphism f of Y onto t,X which leaves XP pointwise fixed.

Observe that any such F is totally-disconnected (having a base consisting of

closed sets) and any such homeomorphism is unique (as XP is dense).

Proof. Let F be such a compactification; for g, he C{X) we let Bgh = clYZ{g)

n cly coz {h).

(a) If x e Xp, then x e Bgh if and only if x e Hgh. Hence, BBl¡hl n ■ ■ ■ n Bgnihn = 0

if and only if Hguhl n ■ ■ ■ n Hgn_hn = 0.

Proof of (a). Xp n clYZ{g)=Z{g) = XF n clçxZ(g); likewise for coz (A). The

first statement is now clear and the second follows as XP is dense in each of F

and IX.

(b) If j e F, then Hy = Ç\yçBghHg,h is a singleton in IX.

Proof of (b). The collection {Hg h : y e Bgh} of closed sets in compact t,X has the

finite-intersection-property (by (a)) and so 77v ̂  0. Suppose P^QeHy; then there

exist gi, hi e C{X) with £ e 779liftl and Q $ 77Sl>Jll. Then j $ Bn,hl and so there is

B92_h2 with y e Bg2,h2and Bgitlll n B92 ,h2= 0 ; a contradiction as £ e HtlM n 7792,Ä2.

We now have the function/: Y^t,X defined by {f{y)} = Hy. Precisely the same

argument exhibits a function/"1: £A^^ F with {f'\P)} = OpeHgthBg,h. Observing

that y e Bg>ft implies/(j) e 77g-ft and P e Hg¡h implies f~1{P) e Bg¡h, one sees that

/"/-^Icx,/-1 °/=ly,/^[//^] = 59>Il and'/[ß9,h] = 779>ft.    D

The above argument actually shows that any Xe^~3i which has a base 88

consisting of closed sets has at most one compactification F with the collection

{cly Bi n cly (A'\£2): Bu B2 e 8S} as a base.

Since /3AV is a known compactification of XP, the Characterization Theorem

leads one to consider the collection i/' = {Vg¡ h : g, he C{X)}, where Vgih = clBXpZ{g)

n cliXp coz{h). A straightforward calculation (using 2.2 and [GJ, 6.9(c)]) shows

that {vx)^[Hgih]= Vg¡h, where vx denotes, as usual, the Stone-extension of

vx: Xp -> IX. Thus T^ is a base for the weak topology t on the set /5XP generated

by vx; also, (jSA'p, t) is coarser than ßXP and so is compact. Recalling that vx is

onto IX (as XP is dense in £X), it follows that £Z is the £0-quotient of {ßXP, t).
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We have already noted (2.2) that t,X is the quotient space of ßXP under the equiva-

lence relation: A71~Af2oZ[M1] n Z{X)=Z[M2] n Z{X). Consequently: ßXP

?tt,X iff {ßXp, t)^ÇX iff Z[Mi] n Z{X)=Z[M2] n Z{X) => Mi = M2 (where £

indicates a canonical homeomorphism, that is, one which leaves XP pointwise

fixed). Observe that for the space R of reals, RP = RD, \ßRP\ =22C and |££| =2C.

4. The natural transformations 8 and 8, and the push-out ß. We have already

noted the continuity of 8X: KC(X)-^ßX; let 8X denote the restriction of 8X to £A^.

4.1 Proposition. 8 = {8x}Xe$-3i is a natural transformation from Kc to ß; hence,

8 — {8x}xe3~3$ is a natural transformation from £ to ß.

Proof. We must show that 8X o KC(f}=f° 8Y iff: F-> X. Suppose not, then there

is a £ e Kcm and g e C{X) with g ofe P, but /(/?) <£ clsx Z{g), where p = 8Y{P).

But then f~[ß X\clex Z{g)] is a neighborhood of p in ßY which misses Z{g°f);

contrary to p e clßy Z(g of).    □

A push-out in a category ,4 is a commutative diagram m2 ° w1 = w4 ° m3 in ^4

which is best possible in the lower right corner; that is, if m'2 ° m1=m'i ° w3, then

there is a morphism m unique with the property that m ° m2 = m2 and m ° mi = m'i.

Push-outs are clearly unique to within equivalences; that is, if m'2° mi = m'io m3

is also a push-out, then m is an equivalence.

Let e denote the natural transformation from the identity functor 73i: $~3i -* ^3i

to the reflector functor ß: ^3í¡^¡-'€; that is, ex is the embedding of X into ßX.

The natural transformations 8 and v are precisely those needed to show that

e°p=8°v is a push-out in Fun [&~3y $~3i¡\, the category whose objects are functors

from ^3j to <^"3i and whose morphisms are natural transformations.

4.2 Theorem. e°p = 8°visa push-out in Fun [^3±, $~3\\.

Proof. It is straightforward to show that ex° px=8xoVx if Je J3!. We let

n.t. [£, G] denote, as usual, the natural transformations from £ to G. Suppose

£: &~3i -> &~3i, r¡ e n.t. [I3i, F] and A e n.t. [£, £] are such that r¡ o p = A o v. We seek

y e n.t. [ß, £] such that y ° 8=\, y ° e = r¡ and whenever y e n.t. [ß, F] so com-

mutes, then y = y.

Let X e ¿7~3i. Since r¡x ° px = Ax ° vx, we have ijxtA'] ^ AX[£X] ; hence, r¡x : x \-> iqx{x)

{xe X) defines a continuous function r¡'x: X-> AX[£X]. Since AX[£A^] is compact,

we have the Stone-extension rj'x: ßX-> AX[£A']; hence yx: p h> rjx{p) defines a

continuous function yx : ßX -> FX. We claim that y = {yx}Xe$-3± is our desired natural

transformation from ß to £.

To see that y en.t.[ß, F], let /: Y^*X. Since y e n.t. [I3i, F], we have

^(/) ° Vy = 71x °f With this equality in mind, the two maps yx °/and £(/) o yY are

seen to agree on dense Y of ßY and hence are equal.

The equality y ° e = r¡ is straightforward and the equality y ° 8 = \ follows from

the agreement of yx ° 8X with Ax on dense JtF{X).
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Finally, suppose that y e n.t. [ß, £] with y ° 8=X and y ° e = r¡. Then y'=y as

y'x and yx agree on dense X of ßX.    □

4.3 Corollary. ex ° px = 8x o V]í ¡s a push-out in y3±.    D

5. The continuous and order-preserved images of £ F. If F* is a compactification

of F and/: F* -» A"e"if, it is straightforward to show that/[F*] = clx/[F]; in

particular, if g : Y —> X in <^$, then £ [j8 F] = cliX g [ F]. Moreover, if the / above is

also a homeomorphism, then/[F*\F] = clx/[F]\/[F] [GJ, 6.11]. The following

result is now clear.

5.1 Proposition. If f: F-> X, then both £Jf and ßX contain a continuous and

order-preserved image oft,Y; namely, /[£F] and 8X °/[£F], respectively. Moreover:

(a)/[£F] = clcx/[F], and if f is also a homeomorphism, then /[£F\FJ,]

= <W[ Y]\f[Y].
(b) 8X o 7vc(/)[A'c(y)] = 0X o/[£ F] = clÄX/[ F], and iff is also a homeomorphism and

Y is a P-space, then 8X o/[£ F\ YF] = cl„/[ F]\/[ F].    D

An alternate proof of the first set of equalities in (b) is provided by the fact that

8 e n.t. [Kc, ß] and 8 e n.t. [£, ß].

5.2 Corollary [GJ, 14F].

(a) A z-ideal P of C{X) is prime if and only if there is an ultrafilter °tt on X such

thatP = {geC{X):Z{g)e®}.

(b) The prime z-ideals contained in M" are precisely the z-ideals P such that

P={g e C{X) : Z{g) e <?/} for some ultrafilter <?/ on X that converges to p.

Proof. The mapping *i^{ge C{X) : Z{g) e <%} is the £-extension of the

obvious map/ XD^r XP, where XD is the set Xdiscretely topologized; moreover,

j is onto IX (5.1 (a)). Since an ultrafilter % on X converges to p e ßX if and only if

p=f{°U) [GJ, 6.6(a)], statement (b) holds because 8 e n.t. [£, ß].    Q

Note that statements similar to those in 5.2 can be obtained by considering the

£-extension of px: XP -> X; in this connection, see 2.2.

It follows directly from 5.1 that/maps £ F onto £A'if and only if/[F] is dense

in XP; and that 8X » /maps £F onto ßX if and only if/[F] is dense in X. Before

formally stating these conclusions, however, we introduce a concept which leads,

among other things, to further equivalent conditions (see 5.4 and 7.1).

Definition. Let Y^X. A subset S of C(X) is Y-unit-free, or F-u.f., if g\Y is not

a unit of C{Y) (equivalently, Z{g) n Y+ 0) for each geS. We let £(F)

= {£ e KclX) : P is F-u.f.} and £(F) = £(F) n t,X.

Following is a list of properties, some obvious, which is included here for

future reference; recall [GJ, 2.7] that Z~{Z{P)) = {g e C{X) : Z{g)=Z{h) for some

heP} is the smallest prime z-ideal containing £ e KC(X).

5.3 Lemma.

(a) Let YçX,Sç C{X) and P e Kcœ.
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{I) If Sis Y-u.f andS'^S, then S' is Y-u.f

(2) £ e £( F) if and only ifZ^{Z{P)) e T{ Y).

(3) £( F) is closed in KCiX) ; hence, T{ Y) is closed in £A\

(b) Let); Y^XandSçC{X).

(1) S isf[Y]-u.f if and only if g o fis not a unit of C{Y)for each g e S.

(2) KCU)[Kcm] £ £(/[ F]) ; hence, /[£ F] £ £(/[ F]).

(3) clXp/[ F]=/[£F] n XP = £(/[F]) n AV

Proof, (a)(3): If £e 7CC(X)\£(F), then there is a ge£ with Z(g)n F= 0 and

>£(g) is a neighborhood of £ which misses £(F). In (b)(2) note that g °fe Q e KCiY)

implies g o/is not a unit of C{Y). Turning to (b)(3), the first equality is clear from

5.1(a), and the second set is contained in the third by (b)(2). Finally, the third is

contained in the first as every basic neighborhood Z{g) of a point x in £(/[ F]) n XP

meets/[F] {Z{g) nf[Y]¿ 0asgeMxe £(/[F])).    D

Since the G¿-subsets of X also form a base for XP [GJ, 1.10, 1.14(a) and 3.2(b)],

it is convenient to refer to clXp F as the G6-closure of F in X; similarly, G6-closed

and G0-dense subsets of X are defined (this terminology is found in [CN, 5]). It is

clear that F is Gó-dense in X if and only if X\ Y contains no nonvoid zero-sets of X.

5.4 Proposition. The following assertions are equivalent for f F->- X: (a)

/[£F] = £Ar; (b)/[F] is G^-dense in X; (c) X\f[Y] contains no nonvoid zero-sets of

X; (d) f{f[Y]) = KC{X); (e) £(/[F]) = £A-; (f) XP<=f[CY]; (g) XP^T{f[Y]).

Proof, (a) o (b) <=> (c): 5.1(a) and the remarks immediately above, (c)o(d)

o (e): Every nonunit is contained in some prime ideal, and 5.3(a)(2). (b) o (e) and

(b) o (f): 5.3(b)(3).    D

Since h\->h\x is an isomorphism of C{ßX) onto C*{X), it is clear that

êx: £,X^l{ßX) if X is pseudo-compact; the converse is now seen to hold by 5.4

(a) o (c) and [GJ, 61] (we will see in 6.2 that êx is always a homeomorphism).

Before proceeding, however, note that if Y^X, then 5.1(b), 5.2(b)(2) and

5.2(a)(1) show that

cl„ F = 8X o f[£F] £ 8X[T{Y)] ̂ {peßX:0> is F-u.f.},

where i: F-> X is inclusion and, for peßX,  Op = {ge C{X) :<dexZ{g) is a

neighborhood of p} [GJ, 7.12].

5.5 Proposition. If Fç X and i: F-> X is inclusion, then

cl„ F = 8X o f[£F] = 8X[T{Y)] ={peßX:0" is Y-u.f}.

Proof. If p e ßX and Ov is F-u.f., we show that p e cl^ F. Let U be a neigh-

borhood of p; without loss of generality, U=Zßx{h) for some h e C{ßX) [GJ,

3.2(b)]. Thenh\x e Op [GJ, 7.12(a)] and soZ{h\x) meets Fas Op is F-u.f. ; note that

Z{h\x)^U.    D
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6. / and z-embedding. Let /: Y-* X be given. Since £ F is compact and /

preserves order, we have:/is an (into) order-isomorphism iff/is one-to-one iff/

is a (into) homeomorphism. A sufficient condition for/to be one-to-one is that

/be a z-embedding; it is not known if this is also a necessary condition.

Definition. A subset F of X is z-embedded in X if Z{ Y) £ {Z n F : Z e Z( A")} ;

also, /: F->Z is a z-embedding if/is a homeomorphism whose image is z-

embedded.

Although a C*-embedded subset is clearly z-embedded, the converse does not

generally hold as every z-embedded subset of X is C*-embedded if and only if X

is an £-space [H], Other subsets which are always z-embedded are cozero-sets

[GJi, 3.1] and Lindelöf subspaces (Jerison, [HJ,, 5.3]).

For /: F^ X and Pe £X we let P, denote the subset P, = {he C{Y) : Z{h)

=Z{gof) for some geP} of C{Y). Clearly, ££{ge C{X): g°feP,}, the latter

being /(£/) if P¡ e £ F. But £> is not generally a point of £ F; if it is, then

£e £(/[F]) (as ££/(£>) is/[F]-u.f.) and we have seen (5.4) that £A==£(/[F]) if

and only if /[ F] is G^-dense in X. For P erX it is easy to verify that £

= {g e C{X) : g o fe Pf} if and only if £ has property:

6.1 he C{X), g e £ and Z(/i of) = Z{g of) imply A 6 P.

As its proof indicates, the following theorem is essentially due to Mark

Mandelker.

6.2 Theorem.

(a) /: F -> X is a z-embedding if and only if the mapping of Z{X) into Z{ Y)

defined by Z h->f*~[Z] is onto.

(b) Let f: Y -*■ X be a z-embedding.

(1) fis an order-isomorphism and hence a homeomorphism.

(2) IfP e IX, then P, e £ F if and only ifP e £(/[ F]). 7n/aci, ;/£ e £(/[ F]), iAen

£> ¿y í/ie smallest prime z-ideal of C{ Y) with ££/(£,); and if P e/[£ F], //ie« £> is

the unique point oflY with P=f{P¡).

(3)/[£F] = {£e£(/[F]) : £ has property 6.X} and T(f[Y]) = {P e £Z : P^f{Mp)

for some p e ßY}.

(4) /[£F] = £(/[F]) if and only if the equality f[A{Op)] = {P e ÇX : P^f{M")}
holds for each p e ßY.

Proof. Statement (a) is [M2, Theorem II] and shows that the proofs given in

[M, 1.5] generalize to obtain (b)(1) and (b)(2) with the exception of the implication

£re£F=>£e£(/[F]) which, however, is noted above. Parts (b)(3) and (b)(4)

now follow from (b)(2); specifically, for (b)(3) observe the remark incorporating

6.1 and for (b)(4) recall that/preserves order.    □

For future reference, we single out the result most useful to us.

6.3 Corollary. Let f Y-> X be a z-embedding such that /[£ F] = £(/[ F]).

Then f is an order-isomorphism homeomorphism of IY onto {P e {X : P^f{M")for
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some peßY}. In fact, f[A{Op)]={P e IX : P^f{Mp)}cA{OiM) if peßY, with

f[A{Oy)] = A{Of(y})ifyeY.

Proof. Note that f{Mp)çMf'p) for peßY (as 6 e n.t. [£, 0]) with f{My)=Mny)

ifyeF(1.5).    Q

Our interest is now directed toward finding z-embeddings with/[£F] = £(/[F]).

6.4 Proposition. Iff: Y^X has T{f[Y]) open in £X, then/[£F] = T{f[Y]). In

particular, /[£ F] = £(/[ F]) if either of the following two conditions holds:

(a) X\f[ F] contains no nonvoid zero-sets of X;

(b) X\f[Y] is a zero-set of X.

Proof. If £(/[F]) is open, then so is £(/[F])\/[£F] = £(/[F]) n {CX\f[Y});

moreover, this set is contained in t,X\XP (5.3(b)(3)) and so is empty as XP is

dense. If (a) holds, then T{f[Y]) = £X (5.4). Let (b) hold with X\f[Y]=Z{k); we

show that T{f[Y]) = Ac{k). Since Z{k) n/[F]= 0, it is clear that £(/[ F]) £ A c{k).

Suppose £ e Ac{k) and £ £ £(/[ F]); then there is g e P with Z(g)£ X\f[ Y] =Z{k),

contrary to k $ P.    □

6.5 Corollary [Mlt Theorem lia]. 7/ X is locally-compact and o-compact

{equivalently, ßX\X is a zero-set of ßX) and peßX, then the collection of prime

z-ideals of C{ßX) contained in êx{Mp) is order-isomorphic to the collection of prime

z-ideals of C{X) contained in Mp.    □

Observe that every pseudo-compact space provides a counterexample to the

converse of 6.5 (see the remark immediately following 5.4).

7. The space of minimal prime ideals. The space m{A) of minimal prime ideals

of A e 3ft topologized relative to Spec A has been studied extensively; see [KJ,

[K2] and [HJ]. It is clear that the topology on the set m{A) relative to KA is finer

than m{A); in fact, if A contains no nonzero nilpotent elements (in particular, if

A = C{X)), then each A{a) n m{A) is open in m{A) [HJ, 2.3] and these relative

topologies coincide. We let m{X) denote the space m{C{X)) and note that

m{X)<=tX[GJ, 14.7].

It is easy to verify [HJ, 5.3] that no proper closed subset of m{X) is mapped onto

ßxbyex.

7.1 Proposition. The following are equivalent for f: Y^ X: (a) 8X °f[tY]=ßX;

(b)/[F] is dense in X; (c) m{X) ç £(/[ F]).

Proof, (a)o(b): 5.1(b). (b) => (c): 8x[m{X)]=ßX and 8x[T{f[Y])] = clßXf[Y]

(5.5). (c) => (b): We show that the closed (5.3(a)(3)) subset T(f[Y]) n m{X) of

m{X) is mapped onto ßX by 8X. Let p e ßX= clexf[ F] = 8x[T{f[ F])] ; thus, there is

£ e £(/[F]) with P^M". Choose Q e m{X) with ßc£, then Q e T(f[Y]) n m{X)

(5.3(a)(1)) and 8x{Q)=p.    D

Note that if m{X) £/[£ F], then/[F] is dense (5.3(b)(2) and 7.1).
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A proof of the following theorem of Mandelker permits us to apply the pre-

ceding proposition and 8 e n.t. [£, j8], Mandelker's statement, although formulated

for the case eY: Y^ßY, is equivalent to that given below (as Fis C*-embedded

in X if and only if i: ßY=clex Y [GJ, 6.9(a)]).

7.2 Theorem (Mandelker [M1; Theorem I]). Let Y be densely C*-embedded in

X, peßY and PeXCiX) with £çMi(p), where i: F-> X is inclusion. Then P is

comparable to î{Mp). In fact, £ç f(A7p) if and only ifP ef{Y); while i{Mp)<^P if and

only if P$ T{Y).

Proof, (a): £çf(AP) implies £e T{Y) (5.3(b)(2) and 5.3(a)(1)). (b): If£ef(F),

then £' = Z~(Z(£))e£(F) (5.3(a)(2)) and £ç£'^?(£;)çA7i<p) (6.2(b)). Hence,

i{p) = 8x{î{P'i)) = ï{8Y{P'i)) (as 0en.t. [£,£]) and p=dY{P¡) (as i is a homeomor-

phism, F being C*-embedded) ; that is, P[ £ Mp and so £ £ £' £ i(£/) £ i{Mp). (c) : To

conclude the proof we show that £ £ £( F) implies î{Mp)<^P. This is accomplished

by showing £ and i{Mp) to be comparable as then (a) will yield the desired proper

inclusion. Comparability is shown by choosing a g e m{X) with g £ £ and verifying

that g£f(Aip) (this technique is valid by [GJ, 14.8] and is used by Mandelker in

his proof). Choosing such a g, we have ge£(F) (7.1) and gçA/i(p); conse-

quently, g£i(Mp) (by (b), replacing £ with g).    □

Note that if F is z-embedded but not C*-embedded, then we can choose pj^q

in ß Y with i{p) = l{q) ; hence, i{Mq) £ Mm = Mi(p) (the first inclusion as 8 e n.t. [£, ß])

but i{Mq) is not comparable to t{M") (as í is an order-isomorphism).

7.3 Corollary. Let Y be densely z-embedded in X. Then Y is C*-embedded if

and only if p e ßY and ££ M'<p) in KC(X) imply that P is comparable to î{Mp).    □

7.4 Proposition. Letf: Y-+ X.

(a) 8xof[m{Y)] = clexf[Y].

(b) Iff[Y] is dense andf[m{Y)]çm{X), thenf[m{Y)] = m{X).

Proof, (a): 5.1(b) provides the inclusion 8X °f[m{Y)]çcl0Xf[Y] (as m{Y)ç£Y)

as well as the reverse inclusion (for p = 8x °/(£) eclßXf[Y] choose Qem{Y)

with g ^£). (b): The argument of (a) now shows that 8x[f[l F] n m{X)]=clexf[ Y]

{as f[m{Y)]^m{X); i.e.,/(g) e m{X) for the g chosen in (a)) which is now all of

ßX; hence, m{X) £/[£ F] (as no proper closed subset of m{X) maps onto ßX).    □

To prove the following lemma we use: £ e A^C(X) is in m{X) if and only if geP

implies the existence of h $P with gh = 0 [HJ, 1.1].

7.5 Lemma. Letf: Y'-*■ Xbe a z-embedding. Thenf[m{ Y)] Çm(I) if either one of

the following two conditions holds:

(a) f[Y] is dense;

(b) /[ F] is a cozero-set of X.

Proof. Let Qem{Y) and gef{Q); we seek g' $f{Q) with gg' = 0. Choose

hiQ with h{g°f) = 0 (as go/egew(F)) and choose teC{X) with Z{h)
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=Z{t of) (by 6.2(a)). Note that t tf(Q) (as h$Q) and f[Y]<=Z{t-g) (as h{g of)

= 0). Thus, if/[F] is dense we can let g' = t; and if X\f[Y]=Z{k) we can let

g' = k-t.    D

7.6 Theorem. Iff: Y'-*■ X is a dense z-embedding, then f restricted to m{Y) is a

homeomorphism ofm{Y) onto m{X).

Proof. 6.2(b)(1), 7.4(b) and 7.5.    D

Observe that denseness cannot be dropped from the hypothesis of this theorem

(7.1 (b)o(c) and 5.3(b)(2)). Also note that/: F-> X can be onto without

/: m{Y)^m{X); for example, let AVXP and f=px: XP -*■ X.

1.1 Corollary.

(a) [HJ, 5.2] êx restricted to m{X) is a homeomorphism of m{X) onto m{ßX).

(b) î restricted to m{Q) is a homeomorphism of m{Q) onto m{R), where i denotes

the inclusion of the rational numbers Q into R.

(c) If X is countable, then vx: ßXD^m{CX).

Proof. Both i and vx are z-embeddings as countable spaces are Lindelöf. In (c),

note that a countable £-space is discrete [GJ, 4K].    Q

8. Some final applications. Suppose a topological space Zhas a subset A which

is closed, contains only isolated points of X, and is disjoint from a subset A'^X

whose union with A is dense in X. Then, it is straightforward to verify that

clxA' = X\A.

8.1 Theorem. Let f. Y-+ X be such that A = X\f[Y] is finite and contains only

zero-set points of X.

{a)f[lY] = lX\{Ma:aeA}.

(b) Iff is a homeomorphism, then f is a z-embedding with /[£ F] = £(/[ F]) {so

that the hypothesis of 6.3 is satisfied); alsof[£Y\YP] = rX\XP.

(c) Iff is a homeomorphism and clexf[ Y] £ X, then the collection of free maximal

ideals of C{Y) is mapped one-to-one onto the collection of prime z-ideals maximal

among those properly contained in the Ma {a e A).

(d) Iff is a homeomorphism and no point of A is isolated in X, then f restricted

to m{ Y) is a homeomorphism onto m{X).

Proof. Letting A'=f[Y], A and A', viewed as subsets of £Ar, are as in the

preceding remark (2.3(c) and XP is dense); hence, (a) holds by 5.1(a). Observe that

X\f[Y] is a zero-set of X; hence, (b) holds by 6.4(b) and 5.1(a), respectively. In

(c), since f{p) eclBXf[Y]\f[Y] (by the opening remarks of §5), the conclusion

follows from (a) and 6.3. Finally, in (d),/[ F] is now dense in X and 7.6 applies.    □

Observe that if the hypotheses of both (c) and (d) are satisfied, then X must be

compact.

We now have a rather complete description of £([0, 1]) in terms of ££ by taking

a homeomorphism/: R -> [0, 1] with/[£] = (0, 1) and observing that all the various
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hypotheses of 8.1 are satisfied. Although the two isolated points M0 and A7, can

be topologically absorbed by £([0, 1]) (which contains uncountably many such

points) to obtain ££^£([0, 1]), one loses the order-isomorphism properties off in

doing so.

Likewise, the inclusion i of TV" into 7V* = 7Vu {co}, its one-point compactification,

yields the known [GJ, 14G] prime z-ideal structure of £TV* in terms of ßN; here,

the minimalness of the prime z-ideals properly contained in Mm follows from the

noncomparability of the (maximal) prime ideals in CN\N=ßN\N (or from 7.6).

Finally, insight is gained whenever one has a one-to-one sequence s: TV-*- X

such that S=i[TV] contains no cluster points of S in X (equivalently, s is a homeo-

morphism), for then: (1) 8X o s[ßN] = cl„x S and 8X ° s[ßN\N] = clßX S\S (5.1(b));

and (2) s is an order-isomorphism homeomorphism {S is Lindelöf and 6.2).
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