The decomposition of $3$-manifolds with several boundary components.
HTML articles powered by AMS MathViewer
- by Jonathan L. Gross
- Trans. Amer. Math. Soc. 147 (1970), 561-572
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258047-X
- PDF | Request permission
References
- Jonathan L. Gross, A unique decomposition theorem for $3$-manifolds with connected boundary, Trans. Amer. Math. Soc. 142 (1969), 191–199. MR 246303, DOI 10.1090/S0002-9947-1969-0246303-2
- A. G. Kurosh, The theory of groups. Vol. II, Chelsea Publishing Co., New York, N.Y., 1956. Translated from the Russian and edited by K. A. Hirsch. MR 0080089
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800 E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci. (Publ. Math.) (1963).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 147 (1970), 561-572
- MSC: Primary 57.05; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258047-X
- MathSciNet review: 0258047