NONLINEAR EVOLUTION EQUATIONS AND PRODUCT INTEGRATION IN BANACH SPACES

BY

G. F. WEBB

Abstract. The method of product integration is used to obtain solutions to the nonlinear evolution equation $g' = Ag$ where A is a function from a Banach space S to itself and g is a continuously differentiable function from $[0, \infty)$ to S. The conditions required on A are that A is dissipative on S, the range of $(e - \varepsilon A) = S$ for all $\varepsilon \geq 0$, and A is continuous on S.

1. Introduction. Let S be a Banach space and let A be a mapping from a subset of S to S. An evolution equation is a system $g' = A(g)$, $g(0) = p$, where g is a continuous function from $[0, \infty)$ to S and p is a point in S. In [3] F. Browder has considered nonlinear evolution equations in which S is the Hilbert space and A is continuous, bounded, and dissipative on S. In recent articles Y. Kömura [12], T. Kato [10], and M. Crandall and A. Pazy [5] have considered nonlinear evolution equations in which S is the Hilbert space and A is maximal dissipative, not necessarily continuous, and is the infinitesimal generator of a semigroup of nonlinear nonexpansive transformations on S.

The object of this paper is to obtain solutions to an evolution system in a general Banach space using the method of product integration. A definition of product integration is given as follows:

Suppose that p is in S, $x > 0$, and z is a point in S such that if $c > 0$ there exists a chain $\{s_i\}_{i=0}^n$ from 0 to x such that if $\{s_i\}_{i=0}^n$ is a refinement of $\{s_i\}_{i=0}^n$ then

\[z - \prod_{i=2}^n (e - (t_i - t_{i-1})A)^{-1} p \leq c. \]

(Note that e denotes the identity map on S, $(e - (t_i - t_{i-1})A)^{-1}$ denotes the inverse map of $(e - (t_i - t_{i-1})A)$, $\prod_{i=1}^n (e - (t_i - t_{i-1})A)^{-1} p = (e - (t_1 - t_0)A)^{-1} p$, and if j is an integer in $[2, n]$ $\prod_{i=1}^j (e - (t_i - t_{i-1})A)^{-1} p = (e - (t_j - t_{j-1})A)^{-1} \prod_{i=1}^{j-1} (e - (t_i - t_{i-1})A)^{-1} p$,

where the product operation is composition of mappings.) Then z is said to be the product integral of A with respect to p from 0 to x and is denoted by $\prod_{i=0}^n (e - dIA)^{-1} p$.

Received by the editors March 20, 1969 and, in revised form, August 20, 1969.

AMS Subject Classifications. Primary 3495, 3436; Secondary 3535, 3537.

Key Words and Phrases. Nonlinear evolution equations, product integration, dissipative mapping, semigroup of nonlinear nonexpansive transformations, infinitesimal generator.

Copyright © 1970, American Mathematical Society

273
In [1] G. Birkhoff and in [16] J. Neuberger have used product integration to solve evolution systems where the mapping A is Lipschitz continuous. In this paper the product integration method will be extended to mappings not necessarily Lipschitz continuous.

2. An existence theorem. Let A be a mapping from a subset of S to S such that the following are true:

(I) A is dissipative on its domain D_A, i.e., if $u, v \in D_A$ and $\epsilon \geq 0$ then $\| (e^{-\epsilon A})u - (e^{-\epsilon A})v \| \geq \| u - v \|$.

(II) There is an open subset C of S such that $C \subseteq D_A$ and a positive number α such that if $0 \leq \epsilon < \alpha$ then $C \subseteq R(e^{-\epsilon A})$ (where $R(e^{-\epsilon A})$ denotes the range of $(e^{-\epsilon A})$).

(III) A is continuous on C.

Note that by (I) if $\epsilon > 0$ then $(e^{-\epsilon A})$ is 1-1 on D_A and by (II) if $0 \leq \epsilon < \alpha$ and $q \in C$ then $q \in D(e^{-\epsilon A})^{-1} = R(e^{-\epsilon A})$. If $0 \leq \epsilon < \alpha$ and $q \in R(e^{-\epsilon A})$ let $L(\epsilon)q = (e^{-\epsilon A})^{-1}q$. By (I) $L(\epsilon)$ is nonexpansive on $R(e^{-\epsilon A})$, i.e., if $u, v \in R(e^{-\epsilon A})$ then

\[\| L(\epsilon)u - L(\epsilon)v \| \leq \| u - v \|. \]

Theorem. Let A satisfy conditions (I), (II), and (III). If $p \in C$ and

\[\gamma_p = \min \{ \text{dist}(p, \partial C)/\| Ap \|, \alpha \}, \]

then there is a continuously differentiable function g_p from $[0, \gamma_p)$ to S such that $g_p(0) = p$ and if $0 \leq x < \gamma_p$, $g'_p(x) = Ag_p(x)$ and $g_p(x) = \int_0^x (e^{-dIA})^{-1}p$.

The theorem will be proved by means of a sequence of lemmas each of which is under the hypothesis of the theorem.

Lemma 1.1. If $q \in C$ and $0 \leq x, y < \alpha$, then $\| L(x)q - L(y)q \| \leq |x - y| \cdot \| Aq \|$.

Proof. Using (2) we have that

\[\| L(x)q - L(y)q \| = \| L(x)q - L(x)(e^{-x A})L(y)q \| \]
\[\leq \| q - (e^{-x A})L(y)q \| \]
\[= \| q - [(x/y)(e^{-y A})L(y)q + (1 - x/y)L(y)q] \| \]
\[= |1 - x/y| \| q - L(y)q \| \]
\[\leq |1 - x/y| \| (e^{-y A})q - q \| \]
\[= |x - y| \| Aq \|. \]

Lemma 1.2. Let $q \in C$, let $0 < x < \gamma_q$, and let $\{ s_i \}_{i=0}^n$ be a chain from 0 to x. If j is an integer in $[1, m]$ then

\[\sum_{i=1}^{j-1} L(s_i - s_{i-1})q \in C, \]

\[\sum_{i=1}^{j} L(s_i - s_{i-1})q - q \leq s_j \| Aq \|, \]
and

\[A \left(\sum_{i=1}^{j} L(s_i - s_{i-1})q \right) \leq \|Aq\|. \]

(Note that \(\prod_{i=1}^{j} L(s_i - s_{i-1}) \) denotes the identity map, i.e., \(\prod_{i=1}^{j} L(s_i - s_{i-1})q = q \).)

Proof. The proof is by induction. For \(j = 1 \), \(\prod_{i=1}^{1} L(s_i - s_{i-1})q = q \in C \),

\[\left\| \prod_{i=1}^{1} L(s_i - s_{i-1})q - q \right\| \leq s_1 \cdot \|Aq\| \]

(by Lemma 1.1), and

\[A \prod_{i=1}^{1} L(s_i - s_{i-1})q = \|1/s_1[L(s_1 - s_0)q - q]\| \leq \|Aq\|. \]

Suppose that \(j \) is an integer in \([1, m-1]\), \(\prod_{i=1}^{j} L(s_i - s_{i-1})q \in C \),

\[\left\| \prod_{i=1}^{j} L(s_i - s_{i-1})q - q \right\| \leq s_j \cdot \|Aq\|, \]

and \(\|A \prod_{i=1}^{j} L(s_i - s_{i-1})q\| \leq \|Aq\| \). Then,

\[\prod_{i=1}^{j+1} L(s_i - s_{i-1})q \in C \subseteq D_{L(s_{j+1} - t_j)}, \]

Further,

\[\left\| \prod_{i=1}^{j+1} L(s_i - s_{i-1})q - q \right\| = \left\| \sum_{k=1}^{j+1} \left[\prod_{i=1}^{k} L(s_k - s_{k-1})q - \prod_{i=1}^{k} L(s_k - s_{k-1})q \right] \right\| \]

(note that \(\prod_{k=1}^{j+1} L(s_k - s_{k-1}) \) is the identity map)

\[\leq \sum_{i=1}^{j+1} \|L(s_i - s_{i-1})q - q\| \]

\[\leq s_{j+1} \cdot \|Aq\|. \]

Moreover,

\[A \prod_{i=1}^{j+1} L(s_i - s_{i-1})q = \left\| \frac{1}{(s_{j+1} - s_j)} \left[\prod_{i=1}^{j+1} L(s_i - s_{i-1})q - \prod_{i=1}^{j} L(s_i - s_{i-1})q \right] \right\| \]

\[\leq \|A \prod_{i=1}^{j} L(s_i - s_{i-1})q\| \]

\[\leq \|Aq\|. \]

Lemma 1.3. Let \(q \in C \), let \(0 < x < y_q \), and let \(\{t_i\}_{i=0}^{n} \) be a chain from 0 to \(x \). If \(j \) is an integer in \([1, n]\) then

\[\prod_{i=j}^{n} L(t_i - t_{i-1})q - q = \sum_{i=j}^{n} (t_i - t_{i-1})A \prod_{k=j}^{i} L(t_k - t_{k-1})q. \]
Proof.
\[
\prod_{t=j}^{n} L(t_{i} - t_{i-1})q - q = \prod_{t=j}^{n} \left[\prod_{k=j}^{i-1} L(t_{k} - t_{k-1})q - \prod_{k=j}^{n-1} L(t_{k} - t_{k-1})q \right] \\
= \prod_{t=j}^{n} (t_{i} - t_{i-1}) AL(t_{i} - t_{i-1}) \prod_{k=j}^{i-1} L(t_{k} - t_{k-1})q \\
= \sum_{t=j}^{n} (t_{i} - t_{i-1}) A \prod_{k=j}^{i} L(t_{k} - t_{k-1})q.
\]

Let \(p \in C \), let \(c > 0 \), and let \(m \) be a nonnegative integer. The number-sequence \(\{s_{i}\}_{i=0}^{m} \) is said to have property \(P_{c} \) provided that the following are true: (i) \(s_{0} = 0 \), \(s_{m} < \gamma_{r} \) (ii) \(\{s_{i}\}_{i=0}^{m} \) is increasing, and (iii) if \(h \) is an integer in \([0, m - 1] \), \(s_{h} \leq x \leq s_{h+1} \), \(\{t_{i}\}_{i=0}^{m} \) is a chain from \(s_{h} \) to \(x \), and \(j \) is an integer in \([0, n] \), then

\[
\left| A \prod_{k=j}^{t} L(t_{k} - t_{k-1}) \prod_{i=1}^{h} L(s_{i} - s_{i-1})p \right| - A \prod_{k=j}^{n} L(t_{k} - t_{k-1}) \prod_{i=1}^{h} L(s_{i} - s_{i-1})p \leq c.
\]

Lemma 1.4. Let \(p \in C \), let \(c > 0 \), and let \(\{s_{i}\}_{i=0}^{m} \) have property \(P_{c} \). There is a nonnegative integer \(s_{m+1} \) such that \(s_{m} < s_{m+1} < \gamma_{r} \) and \(\{s_{i}\}_{i=0}^{m+1} \) has property \(P_{c} \).

Proof. Lemma 1.4 follows from Lemma 1.2 and the continuity of \(A \) at \(\prod_{t=1}^{n} L(s_{t} - s_{t-1})p \).

Lemma 1.5. Let \(p \in C \), let \(c > 0 \), and let \(\{s_{i}\}_{i=0}^{m} \) have property \(P_{c} \). Suppose that \(y \) is a number such that \(s_{m} < y < \gamma_{r} \) and if \(s_{m+1} \) is a nonnegative integer such that \(s_{m} < s_{m+1} < y \) then \(\{s_{i}\}_{i=0}^{m+1} \) has property \(P_{c} \). Then, if \(s_{m+1} = y \), \(\{s_{i}\}_{i=0}^{m+1} \) has property \(P_{c} \).

Proof. Let \(q = \prod_{t=1}^{n} L(s_{t} - s_{t-1})p \), let \(\{t_{i}\}_{i=0}^{n} \) be a chain from \(s_{m} \) to \(y \), and let \(d > 0 \). There is a positive number \(b \) such that if \(u \in C \) and \(\|u - \sum_{t=1}^{n} L(t_{i} - t_{i-1})q\| < b \) then

\[
\left| Au - A \prod_{t=1}^{n} L(t_{i} - t_{i-1})q \right| < d.
\]

There is a positive number \(r \) such that \(t_{n-1} < r < t_{n} = y \) and \(t_{n} - r < b/\|Ap\| \). By Lemmas 1.1 and 1.2

\[
\left| L(r - t_{n-1}) \prod_{t=1}^{n-1} L(t_{i} - t_{i-1})q - \prod_{t=1}^{n} L(t_{i} - t_{i-1})q \right| \leq (t_{n} - r) \cdot \|Ap\| < b.
\]

Then, if \(j \) is an integer in \([0, n-1] \)

\[
\left| A \prod_{t=1}^{j} L(t_{i} - t_{i-1})q - A \prod_{t=1}^{n} L(t_{i} - t_{i-1})q \right| \\
\leq \left| A \prod_{t=1}^{j} L(t_{i} - t_{i-1})q - AL(r - t_{n-1}) \prod_{t=1}^{n-1} L(t_{i} - t_{i-1})q \right| \\
+ \left| AL(r - t_{n-1}) \prod_{t=1}^{n-1} L(t_{i} - t_{i-1})q - A \prod_{t=1}^{n} L(t_{i} - t_{i-1})q \right| \\
< c + d.
\]
Then, if j is an integer in $[0, n]$

\[A \left| \sum_{i=1}^{n} L(t_i - t_{i-1})q_m - A \sum_{i=1}^{n} L(t_i - t_{i-1})q_m \right| \leq c \]

and so the lemma is established.

Lemma 1.6. Let $p \in C$, let $c > 0$, and suppose that $\{s_i\}_{i=0}^{n_0}$ is an infinite increasing number-sequence such that $\lim \{s_i\}_{i=0}^{n_0} < \gamma_p$ and if n is a nonnegative integer $\{s_i\}_{i=0}^{n_0}$ has property P_c. Then there is a positive integer m and a sequence $\{r_i\}_{i=0}^{m+1}$ such that if i is an integer in $[0, m]$ $s_i = r_i$, $r_{m+1} = \lim \{s_i\}_{i=0}^{n_0}$, and $\{r_i\}_{i=0}^{m+1}$ has property P_c.

Proof. Let $q_0 = p$ and if n is a positive integer let $q_n = L(s_n - s_{n-1})q_{n-1}$. If n is a positive integer then $\|q_n - q_{n-1}\| = \|L(s_n - s_{n-1})q_{n-1} - q_{n-1}\| \leq (s_n - s_{n-1})\| A p \|$. Let $s = \lim \{s_i\}_{i=0}^{n_0}$, let $q = \lim \{q_i\}_{i=0}^{n_0}$, and note that $q \in C$ since $\|q_n - p\| < s \cdot \| A p \|$ and so $\|q - p\| < \text{dist}(p, \partial C)$. There is a positive number b such that if $u \in C$ and $\|u - q\| < b$ then $\|u - Aq\| < c/2$. Let m be a positive integer such that $\|q - q_m\| < b/2$ and $s - s_m < b/2 \| A p \|$. Let $0 < s \leq s_m$, let $\{t_i\}_{i=0}^{n_0}$ be a chain from 0 to x, and let j be an integer in $[0, n]$. By Lemma 1.2

\[A \left| \sum_{i=1}^{j} L(t_i - t_{i-1})q_m - q_m \right| \leq t_j \cdot \| A p \| < b/2 \]

and so

\[A \left| \sum_{i=1}^{j} L(t_i - t_{i-1})q_m - A q_m \right| < c/2. \]

Then, if j is an integer in $[0, n]$

\[A \left| \sum_{i=1}^{j} L(t_i - t_{i-1})q_m - A \sum_{i=1}^{j} L(t_i - t_{i-1})q_m \right| \leq A \left| \sum_{i=1}^{j} L(t_i - t_{i-1})q_m - A q_m \right| + \|Aq - A \sum_{i=1}^{j} L(t_i - t_{i-1})q_m\| \]

\[\leq c \]

and so the lemma is established.

Lemma 1.7. Let $p \in C$, let $c > 0$, and let $0 < x < \gamma_p$. There is a chain $\{s_i\}_{i=0}^{n_0}$ from 0 to x such that $\{s_i\}_{i=0}^{n_0}$ has property P_c.

Proof. By Lemma 1.4 there is an infinite increasing number-sequence $\{s_i\}_{i=0}^{n_0}$ such that $\lim \{s_i\}_{i=0}^{n_0} < \gamma_p$ and if n is a nonnegative integer $\{s_i\}_{i=0}^{n_0}$ has property P_c. Let M denote the set of all such sequences. If $s = \{s_i\}_{i=0}^{n_0}$ is in M let $z(s)$ denote the limit of s. If each of s and t belongs to M define $s \leq t$ only in case s is t or if n is the greatest nonnegative integer such that if i is an integer in $[0, n]$ $s_i = t_i$, then $z(s) \leq t_{n+1}$. Then, \leq is a partial ordering of M.

Assume that there exists no member s of M such that $z(s) > x$. Let L be a linearly ordered subset of M and let y be the smallest positive number such that if s is in
Let \(\{s(t)\}_{t=0}^{\infty}, \{s(t)\}_{t=1}^{\infty}, \ldots \) be an increasing sequence of points in \(L \) such that \(z(s(0)), z(s(1)), \ldots \) converges to \(y \). For each nonnegative integer \(i \) define
\[y_i = \sup_k s_i(k) \]
Then, \(y_i \leq y_{i+1} \) and \(\lim_{i \to \infty} y_i = y \).

Suppose there is a positive integer \(n \) such that \(y_n = y \). Then there is a least positive integer \(n \) such that \(y_n = y \) and there must exist an integer \(k \) such that \(s_n(k) = s_{n+1}(j) \) for each integer \(i \) in \([0, n-1]\) and \(j \geq k \). In this case \(s_n(k), s_n(k+1), \ldots \) converges to \(y \) and so by Lemma 1.5 \(\{s_n\}_{n=0}^{\infty}, s_n = s(k) \) for \(i \) in \([0, n-1]\) and \(s_n = y \), has property \(P_c \). Further, since \(y < y_p \), we have by Lemma 1.4 that \(\{s_i\}_{i=0}^{\infty} \) may be extended to a member \(\{s_i\}_{i=0}^{\infty} \) of \(M \) and so \(\{s_i\}_{i=0}^{\infty} \) is an upper bound for \(L \). If there is no positive integer \(n \) such that \(y_n = y \) then \(y_n < y \) for every \(n \), \(\{y_n\}_{n=0}^{\infty} \) is in \(M \), \(\{y_n\}_{n=0}^{\infty} \) is an upper bound for \(L \).

Thus, if \(L \) is a linearly ordered subset of \(M \), then \(L \) is bounded by a member of \(M \). By Zorn's lemma there exists \(u \in M \) such that \(u \) is maximal. But then we have a contradiction since \(z(u) \leq x < y_p \) and by Lemma 1.6 there exists \(t \in M \) such that \(u < t \). Hence, there exists \(s \in M \) such that \(z(s) > x \) and the lemma is proved.

Lemma 1.8. Let \(p \in C \), let \(c > 0 \), and let \(0 < x < y_p \). There is a chain \(\{s_i\}_{i=0}^{\infty} \) from 0 to \(x \) such that if \(\{t_i\}_{i=0}^{\infty} \) is a refinement of \(\{s_i\}_{i=0}^{\infty} \) then

\[
\left(\prod_{i=1}^{n} L(t_i - t_{i-1})p - \prod_{i=1}^{m} L(s_i - s_{i-1})p \right) < c.
\]

Proof. Let \(\{s_i\}_{i=0}^{\infty} \) be a chain from 0 to \(x \) such that \(\{s_i\}_{i=0}^{\infty} \) has property \(P_c \). Let \(\{t_i\}_{i=0}^{\infty} \) be a refinement of \(\{s_i\}_{i=0}^{\infty} \), i.e., there is an increasing sequence \(u \) such that \(u_0 = 0, u_m = n \), and if \(i \) is an integer in \([0, m]\) \(s_i = t_{u_i} \). If \(i \) is an integer in \([1, m]\) let \(K_i = \prod_{j=i}^{u_i-1} L(t_j - t_{j-1}) \), let \(J_i = \prod_{j=1}^{i} L(s_j - s_{j-1}) \), let \(K_{m+1} = e \), and let \(J_0 = e \). Then,

\[
\left(\prod_{i=1}^{n} L(t_i - t_{i-1})p - \prod_{i=1}^{m} L(s_i - s_{i-1})p \right) = \left(\prod_{i=1}^{m} K_i p - J_m \right)
\]

\[
= \left(\sum_{i=1}^{m} \left[\prod_{j=1}^{i} K_j p - \prod_{j=i+1}^{m} K_j p \right] \right)
\]

\[
\leq \sum_{i=1}^{m} \|K_i J_{i-1}p - J_i p\|
\]

\[
= \sum_{i=1}^{m} \|K_i J_{i-1}p - L(s_i - s_{i-1})J_{i-1}p\|
\]

\[
\leq \sum_{i=1}^{m} \|K_i J_{i-1}p - L\left((s_i - s_{i-1})A\right)J_{i-1}p - J_{i-1}p\|
\]

\[
= \sum_{i=1}^{m} \left[\prod_{j=u_i-1}^{u_i} L(t_j - t_{j-1})J_{i-1}p - J_{i-1}p \right] - (s_i - s_{i-1})A K_i J_{i-1}p
\]
\[\begin{align*}
&= \sum_{j=1}^{m} \left[\sum_{i=1}^{u_j+1} (t_j - t_{j-1}) \left(A \sum_{k=u_{i-1}+1}^{j} L(t_k - t_{k-1}) J_{i-1} - AK_i J_{i-1} p \right) \right] \\
nonumber &\leq \sum_{j=1}^{m} \left[\sum_{i=1}^{u_j+1} (t_j - t_{j-1}) \left(A \sum_{k=u_{i-1}+1}^{j} L(t_k - t_{k-1}) J_{i-1} p \right) \right] \\
nonumber &\quad - A \sum_{j=1}^{m} \sum_{i=1}^{u_j} (t_j - t_{j-1}) J_{i-1} p \\
nonumber &\leq c \cdot \sum_{i=1}^{m} \sum_{j=1}^{u_j+1} (t_j - t_{j-1}) \\
nonumber &= c \cdot x.
\end{align*}\]

Proof of the theorem. Let \(p \in C \). If \(x = 0 \), then \(\prod \delta (e - d I) A p = p \). If \(0 < x < \gamma_p \), then \(\prod \delta (e - d I) A p \) exists by virtue of Lemma 1.8. If \(0 \leq x < \gamma_p \) define \(g_p(x) = \prod \delta (e - d I) A p \). By Lemma 1.2 we see that \(g_p \) is Lipschitz continuous on \([0, \gamma_p)\) with Lipschitz constant \(\leq \| A p \| \), \(g_p(x) \in C \) for \(x \in [0, \gamma_p) \), and \(\| A g_p(x) \| \leq \| A p \| \) for \(x \in [0, \gamma_p) \). For \(0 \leq x < \gamma_p \) we have that \(\text{dist} (p, \partial C) \leq \text{dist} (g_p(x), \partial C) + \| p - g_p(x) \| \leq \text{dist} (g_p(x), \partial C) + x \| A p \| \). Hence,

\[
\text{dist} (p, \partial C) \| A p \| \leq \text{dist} (g_p(x), \partial C) \| A p \| + x
\]

and so \(\gamma_p - x \leq \gamma_{g_p(x)} \). Thus, if \(0 \leq x < \gamma_p \) and \(0 \leq y < \gamma_p - x \), one sees that \(g_{g_p(x)}(y) = g_p(x + y) \). To show that \(g_p' = A g_p \), let \(0 \leq x < \gamma_p \) and let \(c > 0 \). By Lemma 1.2 there is a positive number \(z < \gamma_p - x \) such that if \(0 < y < z \) and \(\{ s_i \}_{i=0}^n \) is a chain from \(0 \) to \(y \), then

\[
\left\| A \prod_{i=1}^{n} L(s_i - s_{i-1}) g_p(x) - A g_p(x) \right\| < c/2.
\]

Let \(0 < y < z \). There is a chain \(\{ t_i \}_{i=0}^n \) from \(0 \) to \(y \) such that

\[
\left\| \prod_{i=1}^{n} L(t_i - t_{i-1}) g_p(x) - g_{g_p(x)}(y) \right\| < c \cdot y/2.
\]

Then,

\[
\frac{1}{y} [g_p(x+y) - g_p(x)] - A g_p(x) \]

\[
< \frac{c}{2} + \frac{1}{y} \left(\prod_{i=1}^{n} L(t_i - t_{i-1}) g_p(x) - g_p(x) \right) - y A g_p(x) \]

\[
= \frac{c}{2} + \frac{1}{y} \sum_{i=1}^{n} (t_i - t_{i-1}) A \prod_{j=1}^{i} L(t_j - t_{j-1}) g_p(x) - y A g_p(x) \]

\[
\leq \frac{c}{2} + \frac{1}{y} \sum_{i=1}^{n} (t_i - t_{i-1}) A \prod_{j=1}^{i} L(t_j - t_{j-1}) g_p(x) - A g_p(x) \]

\[
< c
\]
and so \(g_p'(x) = Ag_p(x) \). Thus, \(g_p' = Ag_p \) on \([0, \gamma_p)\) and so \(g_p \) has a continuous right derivative on \([0, \gamma_p)\). Then \(g_p \) has a continuous derivative on \([0, \gamma_p)\) and so the theorem is proved.

Corollary. Let \(A \) be a mapping from the Banach space \(S \) to \(S \) such that the following are true:

1. \(A^* \) is dissipative on \(S \), i.e., if \(u, v \in D_A \) and \(\varepsilon \geq 0 \) then \(\| (e - eA)u - (e - eA)v \| \geq \| u - v \| \)
2. \(R(e - eA) = S \) for each \(\varepsilon \geq 0 \)
3. \(A \) is continuous on \(S \).

If \(p \in S \) then there is a continuously differentiable function \(g_p \) from \([0, \infty)\) to \(S \) such that \(g_p(0) = p \) and if \(x \geq 0 \) \(g_p'(x) = Ag_p(x) \) and \(g_p(x) = \int_0^x (e - dI_A)^{-1}p \).

Proof. The proof follows immediately from the theorem if one observes that \(\alpha = +\infty \) and \(\text{dist} (p, \partial S) = +\infty \).

It may be noted that a result of J. Dorroh \([8]\) can be used to show that the solutions of \(g_p' = Ag_p \), \(g_p(0) = p \) in the corollary are unique. In \([15]\) G. Minty has shown that if \(S \) is the Hilbert space then \((I')\) and \((III')\) imply \((II')\). More generally, it has been shown recently by T. Kato in \([11]\) that \((I')\) and \((III')\) imply \((II')\) in the case that \(S^* \) is uniformly convex. If \(S \) is a general Banach space F. Browder has shown in \([4]\) that \((I')\) and \((III')\) imply \((II')\) in the case that \(A \) is locally uniformly continuous.

By virtue of the corollary one may define for each \(x \geq 0 \) the transformation \(T(x) \) from \(S \) to \(S \) as follows: \(T(x)p = g_p(x) \) for each \(p \in S \). Then \(T \) is a strongly continuous semigroup of nonlinear nonexpansive transformations on \(S \), i.e.,

1. \(T(x+y) = T(x)T(y) \) for \(x, y \geq 0 \),
2. \(T(0) = e \),
3. \(\| T(x)p - T(x)q \| \leq \| p - q \| \) for \(x \geq 0 \) and \(p, q \in S \) and
4. \(g_p(x) = T(x)p \) is continuous for \(p \) fixed and \(x \geq 0 \).

Further, \(A \) is the infinitesimal generator of \(T \), i.e., \(Ap = g_p'(0) \) for each \(p \in S \). In \([2]\), \([14]\), \([17]\), \([18]\), and \([19]\) representations are given for nonlinear nonexpansive semigroups of transformations in terms of their infinitesimal generators using product integrals.

3. **Examples.** In conclusion we give some examples. In \([6]\) a well-known example is given by J. Dieudonné of a continuous mapping \(A \) from a Banach space \(S \) to \(S \) for which there is no solution to the equation \(g' = Ag \) and \(g(0) = 0 \). This example is given in a Banach space which is not reflexive. Recently, J. Yorke \([20]\) has given an example of a continuous mapping \(A \) from a Hilbert space to itself for which no solution exists to \(g' = Ag \), \(g(0) = 0 \).

In the examples below the mapping \(A \) satisfies conditions \((I')\), \((II')\), and \((III')\) of the corollary.

Example 1. Let \(S = E_1 \) and let \(A \) be a continuous nonincreasing function from \(E_1 \) to \(E_1 \).
Example 2. Let $S=C_{[0,1]}$, i.e., S is the Banach space of continuous real-valued functions on $[0, 1]$ with supremum norm. Let F be a continuous increasing function from E_1 onto E_1 such that F' is continuous and nonincreasing on E_1. Define the mapping A on $C_{[0,1]}$ as follows:

$$Af = F'[F^{-1}[f]]$$ for each $f \in C_{[0,1]}$.

The solutions g_f of the corollary are then given by $g_f(x) = F[x + F^{-1}[f]]$ for $x \geq 0$.

In both Examples 1 and 2 A may be neither linear nor Lipschitz continuous. In both, however, A is locally uniformly continuous. In Example 3 the mapping A is not locally uniformly continuous.

Example 3. Let $S=(c_0)$, i.e., S is the Banach space of real-number sequences $x=(x_n)$ converging to 0 with $||x|| = \sup_n |x_n|$. If each of (a, b) and (c, d) is a point in the plane define the function $F_{(a, b),(c, d)}$ from $[a, c]$ to $[b, d]$ by

$$F_{(a, b),(c, d)}(x) = b + \frac{d-b}{c-a}(x-a)$$ for $x \in [a, c]$.

For each positive integer n define the function A_n from E_1 to E_1 as follows:

$$A_n(x) = \begin{cases} 1 & \text{if } x < -1 \\ 0 & \text{if } x \geq 0 \\ \frac{1}{k+1} & \text{if } x \in \left(-\frac{1}{k} + \frac{1}{k+1}, \frac{1}{k} - \frac{1}{k+1} \right) \\ \frac{1}{k} & \text{if } x \in \left(-\frac{1}{k}, \frac{1}{k} \right) \end{cases}$$

Define the mapping A from (c_0) to (c_0) by $Ax=(A_n(x_n))$ for each $x=(x_n) \in (c_0)$. One sees that A satisfies conditions (I'), (II'), and (III'), since for each positive integer n A_n is nonincreasing and continuous. Moreover, there is no neighborhood about 0 on which A is uniformly continuous.

References

VANDERBILT UNIVERSITY,
NASHVILLE, TENNESSEE