Lévy measures for a class of Markov semigroups in one dimension
HTML articles powered by AMS MathViewer
- by Ken iti Sato
- Trans. Amer. Math. Soc. 148 (1970), 211-231
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266309-5
- PDF | Request permission
Abstract:
Given a Markov semigroup of linear operators in the space of realvalued continuous functions on the line vanishing at infinity, we prove that the Lévy measure exists if the domain of the infinitesimal generator contains $\mathcal {D}_K(D_m D_s^+)$, the domain of William Feller’s generalized second order differential operator restricted to functions with compact supports. We give estimate of singularity of the Lévy measure and representation of the infinitesimal generator. Conversely, given Lévy measure or the form of infinitesimal generator, existence of the corresponding Markov semigroup is shown under some conditions. The case of circles is also discussed.References
- J.-M. Bony, Ph. Courrège et P. Priouret, Sur la forme intégro-différentielle du générateur infinitésimal d’un semi-groupe de Feller sur une variété différentiable, C. R. Acad. Sci. Paris. Sér. A-B 263 (1966), A207-A210. MR 34 #5150a.
- William Feller, On second order differential operators, Ann. of Math. (2) 61 (1955), 90–105. MR 68082, DOI 10.2307/1969621
- William Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504. MR 92046
- Karl Gustafson and Keniti Sato, Some perturbation theorems for nonnegative contraction semigroups, J. Math. Soc. Japan 21 (1969), 200–204. MR 238121, DOI 10.2969/jmsj/02120200
- Nobuyuki Ikeda and Shinzo Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79–95. MR 142153, DOI 10.1215/kjm/1250524975
- Kiyosi Ito, On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1951), 51. MR 40618
- K. Ito, Veroyatnostnye protsessy. II, Izdat. Inostr. Lit., Moscow, 1963 (Russian). Translated from the Japanese by A. D. Ventcel′; edited by E. B. Dy nkin. MR 0189112 M. Motoo, Additive functionals of Markov processes, Seminar on Probability, Vol. 15, Kakurituron Seminar, 1963. (mimeographed in Japanese) —, Application of additive functionals to the boundary problem of Markov processes. Lévy’s system of U-processes, Proc. Fifth Berkeley Sympos. Math. Statist. Prob. (Berkeley, Calif., 1965/66) vol. II: Contributions to Probability Theory, Part 2, Univ. of California Press, Berkeley, Calif., 1967, pp. 75-110. MR 36 #3414.
- Keniti Sato, Integration of the generalized Kolmogorov-Feller backward equations, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1961), 13–27 (1961). MR 137150
- Keniti Sato, On the generators of non-negative contraction semigroups in Banach lattices, J. Math. Soc. Japan 20 (1968), 423–436. MR 231243, DOI 10.2969/jmsj/02030423
- Tadashi Ueno, The diffusion satisfying Wentzell’s boundary condition and the Markov process on the boundary. I, II, Proc. Japan Acad. 36 (1960), 533–538, 625–629. MR 144381
- Wilhelm von Waldenfels, Positive Halbgruppen auf einem $n$-dimensionalen Torus, Arch. Math. 15 (1964), 191–203. MR 166603, DOI 10.1007/BF01589186
- Shinzo Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process, Jpn. J. Math. 34 (1964), 53–70. MR 185675, DOI 10.4099/jjm1924.34.0_{5}3
- Kôsaku Yosida, An extension of Fokker-Planck’s equation, Proc. Japan Acad. 25 (1949), no. 9, 1–3. MR 37488
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 148 (1970), 211-231
- MSC: Primary 60.60
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266309-5
- MathSciNet review: 0266309