The Freudenthal-Springer-Tits constructions revisited
HTML articles powered by AMS MathViewer
- by Kevin McCrimmon
- Trans. Amer. Math. Soc. 148 (1970), 293-314
- DOI: https://doi.org/10.1090/S0002-9947-1970-0271181-3
- PDF | Request permission
References
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- N. Jacobson, Associative algebras with involution and Jordan algebras, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 202–212. MR 0197521
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 238916, DOI 10.1090/S0002-9947-1969-0238916-9
- Kevin McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072–1079. MR 202783, DOI 10.1073/pnas.56.4.1072
- Kevin McCrimmon, Generically algebraic algebras, Trans. Amer. Math. Soc. 127 (1967), 527–551. MR 210758, DOI 10.1090/S0002-9947-1967-0210758-8
- Kevin McCrimmon, Jordan algebras with interconnected idempotents, Proc. Amer. Math. Soc. 19 (1968), 1327–1336. MR 231875, DOI 10.1090/S0002-9939-1968-0231875-9 —, Macdonald’s theorem for quadratic Jordan algebras, (to appear).
- Kevin McCrimmon, A proof of Schafer’s conjecture for infinite-dimensional forms admitting composition, J. Algebra 5 (1967), 72–83. MR 204478, DOI 10.1016/0021-8693(67)90026-9
- Kevin McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671–678. MR 268238, DOI 10.1073/pnas.62.3.671
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793 —, Lectures in abstract algebra. Vol. III, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 148 (1970), 293-314
- MSC: Primary 17.40
- DOI: https://doi.org/10.1090/S0002-9947-1970-0271181-3
- MathSciNet review: 0271181