Strongly separable pairings of rings
HTML articles powered by AMS MathViewer
- by Robert S. Cunningham
- Trans. Amer. Math. Soc. 148 (1970), 399-416
- DOI: https://doi.org/10.1090/S0002-9947-1970-0255615-6
- PDF | Request permission
Abstract:
The theory of adjoint functors has been used by Morita to develop a theory of Frobenius and quasi-Frobenius extensions subsuming the work of Kasch, Müller, Nakayama, and others. We use adjoint functors to define a pairing of the two rings and develop a theory of relative projective and injective modules for pairings generalizing that of Hochschild for extensions. The main purpose of this paper is to define “strongly separable pairings” generalizing strongly separable (i.e. finitely generated projective separable) algebras. We show that such pairings have very close connections to category equivalences, so that it is natural to investigate those properties shared by two rings which admit a strongly separable pairing. We show that most “categorical” properties are so shared.References
- Frank W. Anderson, Endomorphism rings of projective modules, Math. Z. 111 (1969), 322–332. MR 246922, DOI 10.1007/BF01110241
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8 —, The Morita theorems, Lecture Notes, Univ. of Oregon, Eugene, 1962. N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Kent R. Fuller, The structure of $\textrm {QF}-3$ rings, Trans. Amer. Math. Soc. 134 (1968), 343–354. MR 227225, DOI 10.1090/S0002-9947-1968-0227225-9
- N. S. Gopalakrishnan, N. Ramabhadran, and R. Sridharan, A note on the dimension of modules and algebras, J. Indian Math. Soc. (N.S.) 21 (1957), 185–192. MR 136643
- V. E. Govorov, Rings over which flat modules are free, Dokl. Akad. Nauk SSSR 144 (1962), 965–967 (Russian). MR 0139645
- Manabu Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17–27. MR 81269
- Kazuhiko Hirata, On relative homological algebra of Frobenius extensions, Nagoya Math. J. 15 (1959), 17–28. MR 108526
- Kazuhiko Hirata and Kozo Sugano, On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan 18 (1966), 360–373. MR 200309, DOI 10.2969/jmsj/01840360
- G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246–269. MR 80654, DOI 10.1090/S0002-9947-1956-0080654-0
- Takeshi Ishikawa, Faithfully exact functors and their applications to projective modules and injective modules, Nagoya Math. J. 24 (1964), 29–42. MR 169888
- James P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964. MR 0163944
- Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294–329. MR 131451, DOI 10.1090/S0002-9947-1958-0131451-0
- Friedrich Kasch, Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann. 127 (1954), 453–474 (German). MR 62724, DOI 10.1007/BF01361137
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Kiiti Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965), 40–71 (1965). MR 190183
- Bruno Müller, Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964), 345–368 (German). MR 182643, DOI 10.1007/BF01110680
- Bruno Müller, Quasi-Frobenius-Erweiterungen. II, Math. Z. 88 (1965), 380–409. MR 188257, DOI 10.1007/BF01112222
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 148 (1970), 399-416
- MSC: Primary 16.90
- DOI: https://doi.org/10.1090/S0002-9947-1970-0255615-6
- MathSciNet review: 0255615