## The pseudo-circle is not homogeneous

HTML articles powered by AMS MathViewer

- by James T. Rogers PDF
- Trans. Amer. Math. Soc.
**148**(1970), 417-428 Request permission

## References

- R. H. Bing,
*A homogeneous indecomposable plane continuum*, Duke Math. J.**15**(1948), 729–742. MR**27144** - R. H. Bing,
*Concerning hereditarily indecomposable continua*, Pacific J. Math.**1**(1951), 43–51. MR**43451** - R. H. Bing,
*Snake-like continua*, Duke Math. J.**18**(1951), 653–663. MR**43450** - R. H. Bing,
*Each homogeneous nondegenerate chainable continuum is a pseudo-arc*, Proc. Amer. Math. Soc.**10**(1959), 345–346. MR**105072**, DOI 10.1090/S0002-9939-1959-0105072-6 - R. H. Bing,
*Embedding circle-like continua in the plane*, Canadian J. Math.**14**(1962), 113–128. MR**131865**, DOI 10.4153/CJM-1962-009-3 - James Dugundji,
*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606** - Lawrence Fearnley,
*The pseudo-circle is not homogeneous*, Bull. Amer. Math. Soc.**75**(1969), 554–558. MR**242126**, DOI 10.1090/S0002-9904-1969-12241-X - Lawrence Fearnley,
*The pseudo-circle is unique*, Bull. Amer. Math. Soc.**75**(1969), 398–401. MR**246265**, DOI 10.1090/S0002-9904-1969-12193-2 - W. T. Ingram,
*Concerning non-planar circle-like continua*, Canadian J. Math.**19**(1967), 242–250. MR**214037**, DOI 10.4153/CJM-1967-016-3 - J. R. Isbell,
*Embeddings of inverse limits*, Ann. of Math. (2)**70**(1959), 73–84. MR**107221**, DOI 10.2307/1969892
F. B. Jones, - F. Burton Jones,
*Certain homogeneous unicoherent indecomposable continua*, Proc. Amer. Math. Soc.**2**(1951), 855–859. MR**45372**, DOI 10.1090/S0002-9939-1951-0045372-4 - F. Burton Jones,
*On a certain type of homogeneous plane continuum*, Proc. Amer. Math. Soc.**6**(1955), 735–740. MR**71761**, DOI 10.1090/S0002-9939-1955-0071761-1
B. Knaster, - Sibe Mardešić and Jack Segal,
*$\varepsilon$-mappings onto polyhedra*, Trans. Amer. Math. Soc.**109**(1963), 146–164. MR**158367**, DOI 10.1090/S0002-9947-1963-0158367-X - Edwin E. Moise,
*An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua*, Trans. Amer. Math. Soc.**63**(1948), 581–594. MR**25733**, DOI 10.1090/S0002-9947-1948-0025733-4 - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - James Ted Rogers Jr.,
*Pseudo-circles and universal circularly chainable continua*, Illinois J. Math.**14**(1970), 222–237. MR**264622**

*On homogeneity*, Summary of lectures and seminars, Summer Institute of Set-Theoretic Topology (Madison, Wisconsin, 1955), University of Wisconsin, Madison, 1958, pp. 68-70. MR

**21**#4395.

*Un continu dont tout sous-contunu est indécomposable*, Fund. Math.

**3**(1922), 247-286. B. Knaster and C. Kuratowski,

*Problème*2, Fund. Math.

**1**(1920), 223. —,

*Problème*4, Fund. Math.

**2**(1921).

## Additional Information

- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**148**(1970), 417-428 - MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9947-1970-0256362-7
- MathSciNet review: 0256362