A class of decompositions of $E^{n}$ which are factors of $E^{n+1}$
HTML articles powered by AMS MathViewer
- by John L. Bailey
- Trans. Amer. Math. Soc. 148 (1970), 561-575
- DOI: https://doi.org/10.1090/S0002-9947-1970-0264637-0
- PDF | Request permission
References
- Steve Armentrout and R. H. Bing, A toroidal decomposition of $E^{3}$, Fund. Math. 60 (1967), 81–87. MR 206925, DOI 10.4064/fm-60-1-81-87 John L. Bailey, A class of decompositions of ${E^3}$ which are factors of ${E^4}$, Doctoral Dissertation, Univ. of Tennessee, Knoxville, 1968.
- R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. (2) 65 (1957), 484–500. MR 92961, DOI 10.2307/1970058
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399–412. MR 107228, DOI 10.2307/1970322
- R. H. Bing and R. J. Bean (eds.), Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, No. 60, Princeton University Press, Princeton, N.J., 1966. MR 0202100
- Topology of $3$-manifolds and related topics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961. MR 0141085
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- Ronald H. Rosen, $E^{4}$ is the cartesian product of a totally non-euclidean space and $E^{1}$, Ann. of Math. (2) 73 (1961), 349–361. MR 124888, DOI 10.2307/1970337
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 148 (1970), 561-575
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1970-0264637-0
- MathSciNet review: 0264637