Mesures associées aux fonctionnelles additives de Markov. I
HTML articles powered by AMS MathViewer
- by D. Revuz PDF
- Trans. Amer. Math. Soc. 148 (1970), 501-531 Request permission
Abstract:
With each additive functional of Markov processes we associate a measure and characterize, under duality hypotheses, those which correspond to $\sigma$-finite measures. This enables us to weaken the hypotheses of Meyer’s theorem on representation of potentials of measures as potentials of additive functional. We characterize also the measures which are associated with continuous additive functionals. This leads us to show that for each finite continuous additive functional of the process there exists a finite continuous additive functional of the dual process such that the corresponding time-changed processes are in duality. Similar results are also stated for subprocesses which generalize results by Hunt and Blumenthal and Getoor.References
- J. Azéma, M. Kaplan-Duflo, and D. Revuz, Mesure invariante sur les classes récurrentes des processus de Markov, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157–181 (French). MR 222955, DOI 10.1007/BF00531519
- J. Azéma, Marie Duflo, and D. Revuz, Propriétés relatives des processus de Markov récurrents, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 286–314 (French, with English summary). MR 260015, DOI 10.1007/BF00539206
- Jacques Azéma, Marie Kaplan-Duflo, and Daniel Revuz, Récurrence fine des processus de Markov, Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), 185–220 (French). MR 0199889
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- R. M. Blumenthal and R. K. Getoor, Additive functionals of Markov processes in duality, Trans. Amer. Math. Soc. 112 (1964), 131–163. MR 160269, DOI 10.1090/S0002-9947-1964-0160269-0
- R. M. Blumenthal and R. K. Getoor, Accessible terminal times, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 1–8. MR 0212883
- Catherine Doléans, Fonctionnelles additives parfaites, Séminaire de Probabilités (Univ. Strasbourg, 1967) Springer, Berlin, 1968, pp. 34–42 (French). MR 0238389
- H. P. McKean Jr. and Hiroshi Tanaka, Additive functionals of the Brownian path, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 479–506. MR 131295, DOI 10.1215/kjm/1250711998
- G. A. Hunt, Markoff processes and potentials. I, II, Illinois J. Math. 1 (1957), 44–93, 316–369. MR 91349
- Paul-André Meyer, Fonctionelles multiplicatives et additives de Markov, Ann. Inst. Fourier (Grenoble) 12 (1962), 125–230 (French). MR 140148, DOI 10.5802/aif.121
- Paul-André Meyer, Processus de Markov, Lecture Notes in Mathematics, No. 26, Springer-Verlag, Berlin-New York, 1967 (French). MR 0219136
- P.-A. Meyer, Intégrales stochastiques. I, II, III, IV, Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67) Springer, Berlin, 1967, pp. 72–94, 95–117, 118–141, 142–162 (French). MR 0231445 —, Un lemme de théorie des martingales, Séminaire de calcul des probabilités, vol. III, Springer, Berlin, 1969. —, Un résultat de théorie du potentiel, Séminaire de calcul des probabilités, vol. III, Springer, Berlin, 1969. —, Probabilités et potentiels, Actualités Sci. Indust., no. 1318, Hermann, Paris, 1966. MR 34 #5118.
- Masao Nagasawa and Keniti Sato, Some theorems on time change and killing of Markov processes, K\B{o}dai Math. Sem. Rep. 15 (1963), 195–219. MR 164372
- V. A. VolkonskiÄ, Random substitution of time in strong Markov processes, Teor. Veroyatnost. i Primenen 3 (1958), 332–350 (Russian, with English summary). MR 0100919
- V. A. VolkonskiÄ, Additive functionals of Markov processes, Trudy Moskov. Mat. Obšč. 9 (1960), 143–189 (Russian). MR 0137154
- Michel Weil, Propriétés de continuité fine des fonctions coexcessives, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 75–86 (French, with English summary). MR 256466, DOI 10.1007/BF00538525
- A. D. Ventcel′, Non-negative additive functionals of Markov processes, Soviet Math. Dokl. 2 (1961), 218–221. MR 0119252 D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 148 (1970), 501-531
- MSC: Primary 60.62
- DOI: https://doi.org/10.1090/S0002-9947-1970-0279890-7
- MathSciNet review: 0279890