Inseparable Galois theory of exponent one
HTML articles powered by AMS MathViewer
- by Shuen Yuan
- Trans. Amer. Math. Soc. 149 (1970), 163-170
- DOI: https://doi.org/10.1090/S0002-9947-1970-0257063-1
- PDF | Request permission
Abstract:
An exponent one inseparable Galois theory for commutative ring extensions of prime characteristic $p \ne 0$ is given in this paper.References
- N. Bourbaki, Algèbre commutative, Chapitres 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. I : Le langage des schémas, Inst. Hautes Etudes Sci. Publ. Math. No. 4 (1960). MR 36 #177a.
- G. Hochschild, Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443–460. MR 29889, DOI 10.2307/2372257
- G. Hochschild, Simple algebras with purely inseparable splitting fields of exponent $1$, Trans. Amer. Math. Soc. 79 (1955), 477–489. MR 70961, DOI 10.1090/S0002-9947-1955-0070961-9
- Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), 623–630. MR 167499 —, Inseparable exponent one Galois cohomolgy (to appear).
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83–98. MR 244238
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 163-170
- MSC: Primary 13.70
- DOI: https://doi.org/10.1090/S0002-9947-1970-0257063-1
- MathSciNet review: 0257063