Inseparable Galois theory of exponent one
Author:
Shuen Yuan
Journal:
Trans. Amer. Math. Soc. 149 (1970), 163-170
MSC:
Primary 13.70
DOI:
https://doi.org/10.1090/S0002-9947-1970-0257063-1
MathSciNet review:
0257063
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An exponent one inseparable Galois theory for commutative ring extensions of prime characteristic is given in this paper.
- [1] N. Bourbaki, Algèbre commutative, Chapitres 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- [2] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. I : Le langage des schémas, Inst. Hautes Etudes Sci. Publ. Math. No. 4 (1960). MR 36 #177a.
- [3] G. Hochschild, Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443–460. MR 29889, https://doi.org/10.2307/2372257
- [4] G. Hochschild, Simple algebras with purely inseparable splitting fields of exponent 1, Trans. Amer. Math. Soc. 79 (1955), 477–489. MR 70961, https://doi.org/10.1090/S0002-9947-1955-0070961-9
- [5] Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), 623–630. MR 167499
- [6] -, Inseparable exponent one Galois cohomolgy (to appear).
- [7] S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15–33. MR 0195922
- [8] O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83–98. MR 244238
Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.70
Retrieve articles in all journals with MSC: 13.70
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1970-0257063-1
Keywords:
Restricted Lie ring,
derivation,
p-basis
Article copyright:
© Copyright 1970
American Mathematical Society