On the Mann iterative process
Author:
W. G. Dotson
Journal:
Trans. Amer. Math. Soc. 149 (1970), 65-73
MSC:
Primary 47.80; Secondary 65.00
DOI:
https://doi.org/10.1090/S0002-9947-1970-0257828-6
MathSciNet review:
0257828
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, https://doi.org/10.1090/S0002-9904-1966-11543-4
- [2] J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc. 73 (1967), 516–519. MR 211387, https://doi.org/10.1090/S0002-9904-1967-11725-7
- [3] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
- [4] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217–240. MR 36455, https://doi.org/10.1090/S0002-9947-1949-0036455-9
- [5] M. Edelstein, A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly 73 (1966), 509–510. MR 194866, https://doi.org/10.2307/2315474
- [6] M. A. Krasnosel′skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127 (Russian). MR 0068119
- [7] W. Robert Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 54846, https://doi.org/10.1090/S0002-9939-1953-0054846-3
- [8] S. Mazur, Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält, Studia Math. 2 (1930), 7-9.
- [9] Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, https://doi.org/10.1090/S0002-9904-1967-11761-0
- [10] C. L. Outlaw and C. W. Groetsch, Averaging iteration in a Banach space, Notices Amer. Math. Soc. 15 (1968), 180. Abstract #653-342.
- [11] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, https://doi.org/10.1215/S0012-7094-39-00522-3
- [12] Helmut Schaefer, Über die Methode sukzessiver Approximationen, Jber. Deutsch. Math.-Verein. 59 (1957), no. Abt., Abt. 1, 131–140 (German). MR 84116
- [13] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.80, 65.00
Retrieve articles in all journals with MSC: 47.80, 65.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1970-0257828-6
Article copyright:
© Copyright 1970
American Mathematical Society