State spaces for Markov chains
HTML articles powered by AMS MathViewer
- by J. L. Doob
- Trans. Amer. Math. Soc. 149 (1970), 279-305
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258131-0
- PDF | Request permission
Abstract:
If $p(t,i,j)$ is the transition probability (from i to j in time t) of a continuous parameter Markov chain, with $p(0 + ,i,i) = 1$, entrance and exit spaces for p are defined. If $L[{L^ \ast }]$ is an entrance [exit] space, the function $p( \cdot , \cdot ,j)[p( \cdot ,i, \cdot )/h( \cdot )]$ has a continuous extension to $(0,\infty ) \times L[(0,\infty ) \times {L^ \ast }$, for a certain norming function h on ${L^ \ast }$]. It is shown that there is always a space which is both an entrance and exit space. On this space one can define right continuous strong Markov processes, for the parameter interval [0, b], with the given transition function as conditioned by specification of the sample function limits at 0 and b.References
- Kai Lai Chung, Markov chains with stationary transition probabilities, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag New York, Inc., New York, 1967. MR 0217872
- J. L. Doob, Compactification of the discrete state spaces of a Markov process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 236–251. MR 234525, DOI 10.1007/BF00536277
- Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281 (French). MR 100174
- Jacques Neveu, Sur les états d’entrée et les états fictifs d’un processus de Markov, Ann. Inst. H. Poincaré 17 (1962), 323–337 (1962) (French). MR 192559
- David Williams, Fictitious states, coupled laws and local time, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 288–310. MR 245100, DOI 10.1007/BF00531652
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 279-305
- MSC: Primary 60.65
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258131-0
- MathSciNet review: 0258131