Generic bifurcation of periodic points
HTML articles powered by AMS MathViewer
- by K. R. Meyer
- Trans. Amer. Math. Soc. 149 (1970), 95-107
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259289-X
- PDF | Request permission
Abstract:
This paper discusses the bifurcation of periodic points of a generic symplectic diffeomorphism of a two manifold that depends on a parameter. A complete classification of the types of bifurcation that can occur in the generic case is given.References
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1 A. Deprit and J. Henrard, A manifold of periodic orbits, Advances in Astronomy and Astrophysics 6 (1968).
- Julian I. Palmore, Bridges and natural centers in the restricted three body problem, University of Minnesota, Center for Control Sciences, Minneapolis, Minn., 1969. MR 0282570
- M. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Differential Equations 3 (1967), 214–227. MR 209602, DOI 10.1016/0022-0396(67)90026-5 C. Robinson, A global approximation theorem for Hamiltonian systems, Proc. Summer Inst. Global Analysis, (to appear). H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Tome 3, Gauthier-Villars, Paris, 1899.
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095 H. Levine, Singularities of differentiable mappings. I, Mathematisches Institute der Universität, Bonn, 1959.
- Harold I. Levine, The singularities, $S_{1}{}^{q}$, Illinois J. Math. 8 (1964), 152–168. MR 159343
- Harry Pollard, Mathematical introduction to celestial mechanics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0197175
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 95-107
- MSC: Primary 34.65
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259289-X
- MathSciNet review: 0259289