The pseudo-circle is unique
Author:
Lawrence Fearnley
Journal:
Trans. Amer. Math. Soc. 149 (1970), 45-64
MSC:
Primary 54.55
DOI:
https://doi.org/10.1090/S0002-9947-1970-0261559-6
MathSciNet review:
0261559
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Paul Alexandroff, Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension, Ann. of Math. (2) 30 (1928/29), no. 1-4, 101–187 (German). MR 1502874, https://doi.org/10.2307/1968272
- [2] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729–742. MR 27144
- [3] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- [4] Lawrence Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc. 111 (1964), 380–399. MR 163293, https://doi.org/10.1090/S0002-9947-1964-0163293-7
- [5] Lawrence Fearnley, Characterization of the continuous images of all pseudocircles, Pacific J. Math. 23 (1967), 491–513. MR 225293
- [6] -, Pseudo-circles and the pseudo-arc, (to appear).
- [7] F. B. Jones, On homogeneity, Summer Inst. Set-Theoretic Topology. Summary of Lectures and Seminars (Madison, Wis., 1955), Univ. of Wisconsin, Madison, 1958, pp. 68-70. MR 21 #4395.
- [8] G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc. 98 (1961), 369–394. MR 120608, https://doi.org/10.1090/S0002-9947-1961-0120608-0
- [9] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44. MR 166762, https://doi.org/10.4064/cm-10-1-39-44
- [10] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. MR 0007095
Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.55
Retrieve articles in all journals with MSC: 54.55
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1970-0261559-6
Article copyright:
© Copyright 1970
American Mathematical Society