## Zero-one laws for Gaussian processes

HTML articles powered by AMS MathViewer

- by G. Kallianpur PDF
- Trans. Amer. Math. Soc.
**149**(1970), 199-211 Request permission

## Abstract:

Some zero-one laws are proved for Gaussian processes defined on linear spaces of functions. They are generalizations of a result for Wiener measure due to R. H. Cameron and R. E. Graves. The proofs exploit an interesting relationship between a Gaussian process and its reproducing kernel Hilbert space. Applications are discussed.## References

- N. Aronszajn,
*Theory of reproducing kernels*, Trans. Amer. Math. Soc.**68**(1950), 337–404. MR**51437**, DOI 10.1090/S0002-9947-1950-0051437-7 - R. H. Cameron and Ross E. Graves,
*Additive functionals on a space of continuous functions. I*, Trans. Amer. Math. Soc.**70**(1951), 160–176. MR**40590**, DOI 10.1090/S0002-9947-1951-0040590-8 - J. L. Doob,
*Stochastic processes*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR**0058896** - L. Fuchs,
*Abelian groups*, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR**0106942** - I. M. Gel′fand and G. E. Shilov,
*Generalized functions. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR**0435831** - Paul R. Halmos,
*Measure Theory*, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR**0033869** - Takeyuki Hida and Nobuyuki Ikeda,
*Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 117–143. MR**0219131** - Kiyosi Itô,
*Spectral type of the shift transformation of differential processes with stationary increments*, Trans. Amer. Math. Soc.**81**(1956), 253–263. MR**77017**, DOI 10.1090/S0002-9947-1956-0077017-0 - E. L. Lehmann,
*Testing statistical hypotheses*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959. MR**0107933**
R. LePage, - L. A. Shepp,
*Radon-Nikodým derivatives of Gaussian measures*, Ann. Math. Statist.**37**(1966), 321–354. MR**190999**, DOI 10.1214/aoms/1177699516 - Dale E. Varberg,
*Equivalent Gaussian measures with a particularly simple Radon-Nikodym derivative*, Ann. Math. Statist.**38**(1967), 1027–1030. MR**214130**, DOI 10.1214/aoms/1177698770 - John B. Walsh,
*A note on uniform convergence of stochastic processes*, Proc. Amer. Math. Soc.**18**(1967), 129–132. MR**203792**, DOI 10.1090/S0002-9939-1967-0203792-0

*Estimation of parameters in signals of known forms and an isometry related to unbiased estimation*, Thesis, Univ. of Minnesota, Minneapolis, 1967. E. Parzen,

*Statistical inference on time series by Hilbert space methods*. I, Department of Statistics, Stanford Univ., Tech. Rep. No. 23, 1959.

## Additional Information

- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**149**(1970), 199-211 - MSC: Primary 60.50
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266293-4
- MathSciNet review: 0266293