Quadratic variation of potentials and harmonic functions
HTML articles powered by AMS MathViewer
- by Gunnar A. Brosamler
- Trans. Amer. Math. Soc. 149 (1970), 243-257
- DOI: https://doi.org/10.1090/S0002-9947-1970-0270442-1
- PDF | Request permission
Abstract:
We prove the existence of a finite quadratic variation for stochastic processes $u(Y)$, where Y is Brownian motion on a Green domain of ${R^n}$, stopped upon reaching the Martin boundary, and u is a positive superharmonic function on the domain. As by-products we have results which are also of interest from a non-probabilistic point of view.References
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- K. È. Dambis, On decomposition of continuous submartingales, Teor. Verojatnost. i Primenen. 10 (1965), 438–448 (Russian, with English summary). MR 0202179
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- D. L. Fisk, Sample quadratic variation of sample continuous, second order martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 273–278. MR 210184, DOI 10.1007/BF00537825
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- P. Warwick Millar, Martingale integrals, Trans. Amer. Math. Soc. 133 (1968), 145–166. MR 226721, DOI 10.1090/S0002-9947-1968-0226721-8
- Eugene Wong and Moshe Zakai, The oscillation of stochastic integrals, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 103–112 (1965). MR 185650, DOI 10.1007/BF00536744
- M. Brelot, Éléments de la théorie classique du potentiel, “Les Cours de Sorbonne”, vol. 3, Centre de Documentation Universitaire, Paris, 1959 (French). MR 0106366
- Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281 (French). MR 100174
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 243-257
- MSC: Primary 60.62
- DOI: https://doi.org/10.1090/S0002-9947-1970-0270442-1
- MathSciNet review: 0270442