Monotone approximation by algebraic polynomials

Authors:
G. G. Lorentz and K. L. Zeller

Journal:
Trans. Amer. Math. Soc. **149** (1970), 1-18

MSC:
Primary 41.40

DOI:
https://doi.org/10.1090/S0002-9947-1970-0285843-5

MathSciNet review:
0285843

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A given real continuous function *f* on [*a, b*] is approximated by polynomials of degree *n* that are subject to certain restrictions. Let be given integers, , given signs. It is assumed that has the sign of . Theorems are obtained which describe the polynomials of best approximation, and (for ) establish their uniqueness. Relations to Birkhoff interpolation problems are of importance. Another tool are the sets *A*, where attains its maximum, and the sets with . Conditions are discussed which these sets must satisfy for a polynomial of best approximation for *f*. Numbers of the points of sets *A*, are studied, the possibility of certain extreme situations established. For example, if , it is possible that .

**[1]**K. Atkinson and A. Sharma,*A partial characterization of poised Hermite-Birkhoff interpolation problems*, SIAM J. Numer. Anal.**6**(1969), 230–235. MR**0264828**, https://doi.org/10.1137/0706021**[2]**George David Birkhoff,*General mean value and remainder theorems with applications to mechanical differentiation and quadrature*, Trans. Amer. Math. Soc.**7**(1906), no. 1, 107–136. MR**1500736**, https://doi.org/10.1090/S0002-9947-1906-1500736-1**[3]**G. G. Lorentz,*Approximation of functions*, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR**0213785****[4,]**G. G. Lorentz and K. L. Zeller,*Degree of approximation by monotone polynomials. I*, J. Approximation Theory**1**(1968), 501–504. MR**0239342****[6]**George G. Lorentz and Karl L. Zeller,*Gleichmässige Approximation durch monotone Polynome*, Math. Z.**109**(1969), 87–91 (German). MR**0241852**, https://doi.org/10.1007/BF01111237**[7]**Georg Gunther Lorentz and K. L. Zeller,*Birkhoff interpolation*, SIAM J. Numer. Anal.**8**(1971), 43–48. MR**0295529**, https://doi.org/10.1137/0708006**[8]**N. E. Nörlund,*Vorlesungen über Differenzenrechnung*, Springer-Verlag, Berlin, 1924.**[9]**J. R. Rice,*Approximation with convex constraints*, J. Soc. Indust. Appl. Math.**11**(1963), 15–32. MR**0159170****[10]**J. A. Roulier,*Monotone and weighted approximation*, Dissertation, Syracuse University, Syracuse, N. Y., 1968. MR**38**#4875.**[11]**John A. Roulier,*Monotone approximation of certain classes of functions*, J. Approximation Theory**1**(1968), 319–324. MR**0236580****[12]**I. J. Schoenberg,*On Hermite-Birkhoff interpolation*, J. Math. Anal. Appl.**16**(1966), 538–543. MR**0203307**, https://doi.org/10.1016/0022-247X(66)90160-0**[13]**O. Shisha,*Monotone approximation*, Pacific J. Math.**15**(1965), 667–671. MR**0185334**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41.40

Retrieve articles in all journals with MSC: 41.40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0285843-5

Keywords:
Monotone approximation,
polynomials of best approximation,
admissible sets,
minimal polynomials,
basic polynomials of Lagrange interpolation,
Birkhoff interpolation,
free incidence matrices,
poised incidence matrices

Article copyright:
© Copyright 1970
American Mathematical Society