On the structure of certain idempotent semigroups
HTML articles powered by AMS MathViewer
- by Ahmad Shafaat
- Trans. Amer. Math. Soc. 149 (1970), 371-378
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258995-0
- PDF | Request permission
Abstract:
Some general theorems concerning residual finiteness of algebras are given that are applied to show that every idempotent semigroup satisfying $xyzx = xzyx$ identically is a subcartesian product of certain simple semigroups of order two and three.References
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948 J. A. Gerhard and Ahmad Shafaat, Semivarieties of idempotent semigroups (prepublication copy).
- J. R. Isbell, Subjects, adequacy, completeness and categories of algebras. [Subobjects, adequacy, completeness and categories of algebras], Rozprawy Mat. 36 (1964), 33. MR 163939
- Miyuki Yamada and Naoki Kimura, Note on idempotent semigroups. II, Proc. Japan Acad. 34 (1958), 110–112. MR 98141 B. H. Neumann, Group properties of countable character (prepublication copy).
- Ahmad Shafaat, On implicationally defined classes of algebras, J. London Math. Soc. 44 (1969), 137–140. MR 237409, DOI 10.1112/jlms/s1-44.1.137 —, Characterizations of some universal classes of algebras, J. London Math. Soc. (to appear).
- Takayuki Tamura, Attainability of systems of identities on semigroups, J. Algebra 3 (1966), 261–276. MR 190255, DOI 10.1016/0021-8693(66)90001-9
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 371-378
- MSC: Primary 20.93
- DOI: https://doi.org/10.1090/S0002-9947-1970-0258995-0
- MathSciNet review: 0258995