On entropy and generators of measure-preserving transformations
HTML articles powered by AMS MathViewer
- by Wolfgang Krieger
- Trans. Amer. Math. Soc. 149 (1970), 453-464
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259068-3
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 168 (1972), 519.
Abstract:
Let T be an ergodic measure-preserving transformation of a Lebesgue measure space with entropy $h(T)$. We prove that T has a generator of size k where ${e^{h(T)}} \leqq k \leqq {e^{h(T)}} + 1$.References
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1045, Hermann, Paris, 1958 (French). Deuxième édition revue et augmentée. MR 0173226
- Frank Hahn and William Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179–190. MR 230877, DOI 10.1007/BF01692514 K. Jacobs, Lecture notes on ergodic theory, Aarhus Universitet, 1962/63.
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56 (Russian). MR 0217258
- A. H. Zaslavskiĭ, On the isomorphism problem for stationary processes, Teor. Verojatnost. i Primenen. 9 (1964), 318–326 (Russian, with English summary). MR 0164377
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 453-464
- MSC: Primary 28.70
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259068-3
- MathSciNet review: 0259068