On $n$-parameter discrete and continuous semigroups of operators
HTML articles powered by AMS MathViewer
- by James A. Deddens
- Trans. Amer. Math. Soc. 149 (1970), 379-390
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259659-X
- PDF | Request permission
Abstract:
We prove that n commuting operators on a Hilbert space can be uniquely simultaneously extended to doubly commuting coisometric operators if and only if they satisfy certain positivity conditions, which for the case $n = 1$ state simply that the original operator is a contraction. Our proof establishes the connection between these positivity conditions and the backward translation semigroup on ${l^2}({Z^{ + n}},\mathcal {K})$. A semigroup of operators is unitarily equivalent to backward translation (or a part thereof) on ${l^2}({Z^{ + n}},\mathcal {K})$ if and only if the positivity conditions are satisfied and the individual operators are coisometries (or contractions) whose powers tend strongly to zero. Analogous results are proven in the continuous case ${R^{ + n}}$.References
- Louis de Branges and James Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965) Wiley, New York, 1966, pp. 295–392. MR 0244795
- J. L. B. Cooper, One-parameter semigroups of isometric operators in Hilbert space, Ann. of Math. (2) 48 (1947), 827–842. MR 27129, DOI 10.2307/1969382
- James A. Deddens, On extending semigroups of contractions, Trans. Amer. Math. Soc. 145 (1969), 233–239. MR 251583, DOI 10.1090/S0002-9947-1969-0251583-3
- James A. Deddens, Unitary dilations and coisometric extensions, Acta Sci. Math. (Szeged) 31 (1970), 335–338. MR 279616
- R. G. Douglas, Structure theory for operators. I, J. Reine Angew. Math. 232 (1968), 180–193. MR 238114, DOI 10.1515/crll.1968.232.180
- Nelson Dunford and I. E. Segal, Semi-groups of operators and the Weierstrass theorem, Bull. Amer. Math. Soc. 52 (1946), 911–914. MR 19218, DOI 10.1090/S0002-9904-1946-08673-5
- Israel Halperin, Sz.-Nagy-Brehmer dilations, Acta Sci. Math. (Szeged) 23 (1962), 279–289. MR 156196
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- Takasi Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I 14 (1958), 1–15. MR 0107177
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- Béla Sz.-Nagy, Sur les contractions de l’espace de Hilbert, Acta Sci. Math. (Szeged) 15 (1953), 87–92 (French). MR 58128
- Béla Sz.-Nagy, Sur les contractions de l’espace de Hilbert. II, Acta Sci. Math. (Szeged) 18 (1957), 1–14 (French). MR 90794 B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson, Paris and Akadémiai Kiadó, Budapest, 1967. MR 37 #778. J. von Neumann, Allegemeine Eigenwertheorie Hermitischer Funktionaloperatoren, Math. Ann. 102 (1930), 49-131.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 149 (1970), 379-390
- MSC: Primary 47.50
- DOI: https://doi.org/10.1090/S0002-9947-1970-0259659-X
- MathSciNet review: 0259659