Theorems of Krein-Milman type for certain convex sets of operators.
HTML articles powered by AMS MathViewer
- by P. D. Morris and R. R. Phelps
- Trans. Amer. Math. Soc. 150 (1970), 183-200
- DOI: https://doi.org/10.1090/S0002-9947-1970-0262804-3
- PDF | Request permission
Abstract:
Let $M$ be a real (or complex) Banach space and $C(Y)$ the space of continuous real (or complex) functions on the compact Hausdorff space $Y$. The unit ball of the space of bounded operators from $M$ into $C(Y)$ is shown to be the weak operator (or equivalently, strong operator) closed convex hull of its extreme points, provided $Y$ is totally disconnected, or provided ${M^ \ast }$ is strictly convex. These assertions are corollaries to more general theorems, most of which have valid converses. In the case $M = C(X)$, similar results are obtained for the positive normalized operators. Analogous results are obtained for the unit ball of the space of compact operators (this time in the operator norm topology) from $M$ into $C(Y)$.References
- W. Bade, Functional analysis seminar notes (unpublished), Univ. of California, Berkeley, 1957.
- R. M. Blumenthal, Joram Lindenstrauss, and R. R. Phelps, Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747–756. MR 209862, DOI 10.2140/pjm.1965.15.747
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189 N. Dunford and J. T. Schwartz, Linear operators. Part 1: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. A. Ionescu Tulcea and C. Ionescu Tulcea, A note on extreme points (unpublished).
- Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537–546. MR 150256, DOI 10.1016/0022-247X(61)90075-0
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom XXI, Polskie Towarzystwo Matematyczne, Warszawa, 1952 (French). 2ème éd. MR 0054232
- N. T. Peck, Extreme points and dimension theory, Pacific J. Math. 25 (1968), 341–351. MR 238281, DOI 10.2140/pjm.1968.25.341
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968), 92. MR 227751
- A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega )$ for $\Omega$ without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, DOI 10.4064/sm-18-2-211-222
- R. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), 265–274. MR 156224, DOI 10.1090/S0002-9947-1963-0156224-6
- R. R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267–277. MR 179644, DOI 10.1215/S0012-7094-65-03226-6 —, Lectures on Choquet’s theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. G. L. Seever, Generalization of a theorem of Lindenstrauss (mimeographed notes).
- Ivan Zinger, Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Math. Pures Appl. 2 (1957), 301–315 (Russian). MR 96964
- John Cantwell, A topological approach to extreme points in function spaces, Proc. Amer. Math. Soc. 19 (1968), 821–825. MR 229004, DOI 10.1090/S0002-9939-1968-0229004-0
- Marc A. Rieffel, A characterization of commutative group algebras and measure algebras, Bull. Amer. Math. Soc. 69 (1963), 812–814. MR 154141, DOI 10.1090/S0002-9904-1963-11044-7
- Joseph L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150–166. MR 185465, DOI 10.1090/S0002-9947-1965-0185465-9
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 183-200
- MSC: Primary 46.10
- DOI: https://doi.org/10.1090/S0002-9947-1970-0262804-3
- MathSciNet review: 0262804