A characterization of integral currents
HTML articles powered by AMS MathViewer
- by John E. Brothers
- Trans. Amer. Math. Soc. 150 (1970), 301-325
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266125-4
- PDF | Request permission
References
- John E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. 124 (1966), 480–517. MR 202099, DOI 10.1090/S0002-9947-1966-0202099-9
- John E. Brothers, The $(\varphi ,\,k)$ rectifiable subsets of a homogeneous space, Acta Math. 122 (1969), 197–229. MR 241605, DOI 10.1007/BF02392011
- Herbert Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43–67. MR 168727, DOI 10.1090/S0002-9947-1965-0168727-0
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Josef Král, On the Neumann problem in potential theory. Preliminary communication, Comment. Math. Univ. Carolinae 7 (1966), 485–493. MR 209502
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 301-325
- MSC: Primary 53.90; Secondary 28.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266125-4
- MathSciNet review: 0266125