Infinite products which are Hilbert cubes
HTML articles powered by AMS MathViewer
- by James E. West
- Trans. Amer. Math. Soc. 150 (1970), 1-25
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266147-3
- PDF | Request permission
Abstract:
Let $Q$ denote the Hilbert cube. It is shown that if $P$ and $P’$ are compact polyhedra of the same simple homotopy type then $P \times Q$ and $P’ \times Q$ are homeomorphic. A consequence of this result is that the Cartesian product of a countable, locally finite simplicial complex with a separable, infinite-dimensional Fréchet space is a manifold modelled on the Fréchet space. It is also proved that a countably infinite product of nondegenerate spaces is a Hilbert cube provided that the product of each of the spaces with the Hilbert cube is a Hilbert cube. Together with the first result, this establishes that a countably infinite product of nondegenerate, compact, contractible polyhedra is a Hilbert cube. In addition, a proof is given of the (previously unpublished) theorem of R. D. Anderson that a countably infinite product of nondegenerate dendra is a Hilbert cube.References
- R. D. Anderson, The Hilbert cube as a product of dendrons, Notices Amer. Math. Soc. 11 (1964). Abstract #614-649.
- R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515–519. MR 190888, DOI 10.1090/S0002-9904-1966-11524-0
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041
- R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771–792. MR 230284, DOI 10.1090/S0002-9904-1968-12044-0
- Czesław Bessaga and Victor Klee, Every non-normable Frechet space is homeomorphic with all of its closed convex bodies, Math. Ann. 163 (1966), 161–166. MR 201949, DOI 10.1007/BF02052848
- R. H. Bing, A convex metric for a locally connected continuum, Bull. Amer. Math. Soc. 55 (1949), 812–819. MR 31712, DOI 10.1090/S0002-9904-1949-09298-4
- James Eells Jr. and Nicolaas H. Kuiper, Homotopy negligible subsets, Compositio Math. 21 (1969), 155–161. MR 253331
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- David W. Henderson, Open subsets of Hilbert space, Compositio Math. 21 (1969), 312–318. MR 251748
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- Dan Burghelea and Nicolaas H. Kuiper, Hilbert manifolds, Ann. of Math. (2) 90 (1969), 379–417. MR 253374, DOI 10.2307/1970743
- Nicole Moulis, Sur les variétés Hilbertiennes et les fonctions non dégénérées, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 497–511 (French). MR 0254876
- A. Szankowski, On factors of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 703–709 (English, with Russian summary). MR 257965 J. H. C. Whitehead, Simplicial spaces, nuclei, and $m$-groups, Proc. Lond. Math. Soc. (2) 45 (1939), 243-327.
- J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1–57. MR 35437, DOI 10.2307/2372133
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 1-25
- MSC: Primary 54.25
- DOI: https://doi.org/10.1090/S0002-9947-1970-0266147-3
- MathSciNet review: 0266147