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INFINITE PRODUCTS WHICH ARE HILBERT CUBES

BY

JAMES E. WEST

Abstract. Let Q denote the Hubert cube. It is shown that if P and P' are compact

polyhedra of the same simple homotopy type then Px Q and P' x Q are homeomor-

phic. A consequence of this result is that the Cartesian product of a countable, locally

finite simplicial complex with a separable, infinite-dimensional Fréchet space is a

manifold modelled on the Fréchet space. It is also proved that a countably infinite

product of nondegenerate spaces is a Hubert cube provided that the product of each

of the spaces with the Hubert cube is a Hubert cube. Together with the first result,

this establishes that a countably infinite product of nondegenerate, compact, con-

tractible polyhedra is a Hubert cube. In addition, a proof is given of the (previously

unpublished) theorem of R. D. Anderson that a countably infinite product of non-

degenerate dendra is a Hubert cube.

Introduction. In 1964 [1], R. D. Anderson proved that the Cartesian product

of a triod with the Hubert cube is itself homeomorphic to the Hubert cube. He

later generalized this result to the extent of showing that the product of countably

infinitely many dendra is a Hubert cube (a dendron is a nondegenerate, uniquely

arcwise connected Peano continuum) and, together with R. H. Bing in [5], conjec-

tured that the product of countably infinitely many nondegenerate, contractible,

compact polyhedra is homeomorphic to the Hubert cube.

In this paper it is proved (Theorem 5.2) that the products of two compact poly-

hedra with the Hubert cube are homeomorphic if the polyhedra have the same

simple homotopy type. Another theorem (Theorem 6.2) establishes that a countably

infinite product of nondegenerate spaces is a Hubert cube provided that the product

of each with a Hubert cube is. Taken together as Corollary 6.1, these two results

give an affirmative answer to the above Anderson-Bing conjecture. A corollary

(Corollary 5.3) to Theorem 5.2 establishes that the product of a separable, infinite-

dimensional Hubert space with a polyhedron triangulable by a countable, locally

finite, simplicial complex is homeomorphic to an open subset ofthat Hubert space.

This is the converse of a theorem of D. W. Henderson [10], and consists essentially

of settling Conjecture 2 of [9] (attributed to R. D. Anderson) and then applying

another theorem of Henderson which says that all separable, paracompact mani-

folds modelled on infinite-dimensionabHilbert spaces are open subsets of the Hu-

bert spaces [11]. Because of work of N. H. Kuiper and D. Burghelea [12] and N.
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Moulis [13], all homotopy-equivalent open subsets of separable, infinite-dimensional

Hubert spaces are C°°-diffeomorphic, hence homeomorphic. Corollary 5.4 combines

Corollary 5.3 with this result to give that the products of two polyhedra with a

separable, infinite-dimensional Hubert space are homeomorphic if the polyhedra

are of the same homotopy type and are triangulable by countable, locally finite,

simplicial complexes.

The author wishes to express his thanks and acknowledge his debt to R. D.

Anderson for several conversations on the subjects covered in this paper. These

conversations date from February of 1966, when Anderson presented an exposition

of his technique of proof that the product of a triod with a Hubert cube is a Hubert

cube. At the same time, he mentioned the existence of Theorem 6.1 and recom-

mended as a problem Corollary 5.1. Neither Theorem 6.1 nor Theorem 6.3 (the

two announced in [1]) has appeared in print, and the author wishes to thank

Professor Anderson for suggesting that they be included in this paper (with the

author's proofs).

Concerning methods of proof, the technique used by Anderson to prove that

the product of a finite tree with the Hubert cube is a Hubert cube was the following:

He found two sequences {^¡"i and {f~i)r=i of finite closed covers of the product of

the tree with the Hubert cube and of the Hubert cube, respectively. The covers were

chosen so that % + 1 and ^+1 refined % and *J, respectively, that lim^o,, mesh (%)

= 0 = limi^0O mesh (f^), and that there were bijections <f>¡ of % onto T^¡, for each

i, preserving incidence of cover elements and respecting the refinements (that is,

if Ul + 1<=Uu then ^¡ + i(í/( + 1)c^t(í/,)). The sequence {<£(}r=i then in the limit

determined a homeomorphism.

This was the method Anderson expected would be used in the more general

case of the product of a compact contractible polyhedron with a Hubert cube.

The author, however, used instead the methods developed in §4.

The author wishes to note that he has been informed by R. D. Anderson that he

has heard by letter that Andrej Szankowski, a student of Pelczyriski, has recently

also proved Corollary 6.1, if each polyhedron is a triod [14].

Notational conventions. If A is a subset of the positive integers N and if {Xt}ieA

is an indexed collection of spaces, then Ilie/i Xt w'u denote the Cartesian product,

and Pi'. YlteA Xt -*■ Xu the projection. Often, it will be convenient to denote p¡(x)

by jc¡. If {X, Y, Z,...} is a nonindexed collection of spaces, than Xx YxZx

will denote the Cartesian product and Px,Py,Pz,---, the projections. Also,

Px(x) will often be written as xx. The unit interval [0, 1 ] will be denoted by /, and

the Hubert cube, by Q and by fli>o h-

The symbol d( , ) will be used for all metrics, with the following conventions

understood to prevent ambiguity:

(1) If {Xi}ieA is a collection of metric spaces indexed by a subset of N, then the

metric for each X{ will be understood to be bounded so that the diameter of X¡,
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dia (Xi), is less than or equal to one. Also, the metric d on n¡s^ -ïj will be the one

given by the formula d(x, y) = ^,iEA 2~id(xi,yi), for x and y points of YlieA %%■

(2) Where a product of finitely many nonindexed spaces is considered, the metric

on the product space will be taken to be given by the sum of the metrics on the

individual factors.

(3) For functions from a space X into a bounded metric space Y, the metric

used will be that of uniform convergence, i.e., d(f g) = supA.eX d(f(x), g(x)).

2. Local homotopy negligibility. This brief section^ contains an exposition,

sufficient for the present purpose, of a condition which has been exploited recently

to obtain many homogeneity results.

Following Anderson [4], we say that a closed subset A of a space X has Property

Z in X if for each nonnull, homotopically trivial open set U of X, the set U\A is

also nonnull and homotopically trivial. The principal result concerning Property Z

that will be required is the following theorem of Anderson [4] :

Theorem 2.1. Any homeomorphism between two closed subsets of the Hubert

cube which have Property Z may be extended to a homeomorphism of the Hubert

cube onto itself.

The next three lemmas provide easy criteria for determining that a set has

Property Z.

Lemma 2.1. A finite union of sets which have Property Z has Property Z.

Proof. Let Au ..., An be subsets of X with Property Z. If U is any nonnull,

homotopically trivial open set of X, then U\A± is also nonnull, open, and homo-

topically trivial, and, by induction, C/\Uf=i ^i = (((t/\^i)\^2)\- ■ -\-4B) is, too.

Lemma 2.2. A closed subset A of a metric space X has Property Z in X if for all

e>0 there is a homotopy Fe: Xx / —>- Xsuch that

(1) ^(jc, 0) = xfor all x in X,

(2) Fs(Xx{l})r\A=0,and

(3) dia Fs({x} xl)<e, for all x in X.

Proof. Let U be any nonnull, homotopically trivial, open set in X, and let /

be any map of the unit «-sphere Sn (in Rn+1) into U\A. Choose an extension/of

/to a map of the (n-fl)-ball Bn + 1 into U, which must exist by the homotopy

triviality of U. Now let

a = i min [inf {d(f(a), x)\aeSn,xe (X\U) u A},

inf {d(f(b\ x)\be Bn+1, x e X\U}].

Since Bn + r and Sn are compact, s > 0. Let S e (0, 1) be small enough that for a and b

in Bn + 1, d(a,b)^8 implies that d(f(a),f(b))^e. Let Fc be a homotopy which

"uncovers" A as hypothesized, and define /: Bn+1-+ U\A by the formula/(a)
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= Fs(f(a), min {1, (1 - ||a||)/â}), where ||<z|| is the distance from a to the origin of

Rn + 1. Now, indeed, f\Sn=f. Also, for a in Bn + 1 with ||a|| ^ 1 -8,

d(f(a),f(a/\\a\\)) < s 5¡ inf{d(f(al\\a\\), x) | x e (X\U) u A},

so f(a) e U\A. Finally, for a in Bn + 1 with ||aj| á 1 -8, f(a) = Fe(f(a), 1) £ ,4. Thus

f(Bn + 1)<=U\A and i/\,4 is homotopically trivial. Since A can contain no non-

trivial open set, it must have Property Z.

Lemma 2.3. If X and Y are absolute neighborhood retracts and X has a basis of

contractible open sets, then for each subset A of X with Property Z in X, the set

Ax Y has Property Z in Xx Y.

Proof. Eells and Kuiper [8] proved that for any absolute neighborhood retract

B and any closed subset C of B with the property that each point of C has a basis

of neighborhoods i/(in B) such that the inclusion U\A -> U is a homotopy equiva-

lence, the global inclusion B\C -> B is also a homotopy equivalence. The statement

that A has Property Z in X is merely the statement that A is nowhere dense in X

and that for each homotopically trivial open set U of X, the inclusion U\A -> U

is a weak homotopy equivalence (that is, induces isomorphisms on all homotopy

groups). In an absolute neighborhood retract, however, all weak homotopy

equivalences are homotopy equivalences (a theorem of J. H. C. Whitehead [16]).

Since all open sets of absolute neighborhood retracts are absolute neighborhood

retracts, the inclusion U\A —> U is a homotopy equivalence. Therefore, for any

open set Kof Y, the inclusion (Ux V)\(A x Y)^-Ux Vis a homotopy equivalence,

so each open set W of Xx F has a basis of open sets Ux Ksuch that the inclusion

(Ux V)\(A x Y) —> Ux V is a homotopy equivalence. The theorem of Eells and

Kuiper now gives the desired result, namely, that for any nonnull, homotopically

trivial open set W of X x Y, W\(A x Y) is also homotopically trivial.

3. Informalities. In the next section, the approximation method used later in

§5 is developed. Before launching into this, however, an informal, illustrated

discussion of the problems involved may be of some use to the reader.

The simplest nontrivial example is the triod T, which may be represented as that

subset of J0xl (=[\, 1] x [0, 1]) consisting of all points whose first coordinate is

zero or whose second coordinate is one. Let Z^TxI be Tx{0} u (J0x{l})xl.

Using Theorem 2.1, it is easily seen that Zx Q is homeomorphic to Q. (See the

first paragraph of the proof of Theorem 5.1 for the method.) Therefore, one might

try showing Tx Q homeomorphic to Zx Q, which is the approach adopted in this

paper, is the origin of §4, and is achieved in Theorem 5.1.

A first idea might be to consider a sequence {ZJj™! of copies of Zx g in Tx Q

where Z¡ is restricted in the /th coordinate of Q instead of in the /-coordinate of

Txl. Then this sequence of homeomorphisms of Zx g onto successive Z¡'s might

be considered : The first would consist of replacing the /j-coordinate of Q by the
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Figure 1. Z2 (solid lines) in TxIxJ.

Figure 2. Image after "projecting" (g„).
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Figure 3. Image after straightening A (a£) and "folding flanges" into central plate P (</ie).

(Motion pointwise fixed on B, Flt and F2.)

Figure 4. After absorbing A into P carrying B onto F2 (ft).
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Figure 5. After unfolding flanges OAr1). Final image of Z2 (Ae °#£(Z2)), indicating images of

A and Fj.

A = the closed "volume",

Fí = its boundary in the "3-cell", indicated here by shading.

/-coordinate in Txl of Z, leaving the T-coordinate alone, and sending the /,-

coordinate (in g) of Zx g to the (i + l)th coordinate of g in Z^ The second

homeomorphism might consist of following the first by the homeomorphism

which merely exchanges the first and second coordinates of g. The third would

then consist of following the second by the homeomorphism which exchanges the

second and third coordinates of g, and so forth. The constructed sequence of

homeomorphisms converges to a map of Zx g onto TxQ which unfortunately

is just the projection of Z x g off the /-coordinate of Txl and so is not a homeo-

morphism.

Another insufficient try might be to let X={0}xlxl, A={0}xlx{0}, and

B = {0} x {1} x / and to observe that there is a homeomorphism of pairs

/: (Xx {0}, (AuB)x {0}) -> ((A vB)xI,(AuB)x {0})

which is the identity on (Au B)x {0}. This shows immediately that Xx g is homeo-

morphic to (Avj B)x g, so perhaps there is one which is the identity on B x Q.

(If there were, it would extend to one of Tx Q onto Z x g.) Of course, there is no

such homeomorphism, so this, too, is not enough. A last observation, however,

is that there is such a homeomorphism which is as close to the identity as may be

desired on (A u B) x g and may be had by following fx idQ: XxQ-+(AyJ B)

xlx g by a homeomorphism which "inserts" the extra /-coordinate into g as a

high-indexed coordinate and shifts the replaced coordinate and each successive

one to the next-indexed, leaving unchanged all other coordinates.
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This suggests that a combination of the two tries might work when coupled

with some method of "weaving" the unwanted "fibers" of Xx Q lying "over"

(A u B) x Q into the rest of Zx Q, and that is what §4 and the proof of Theorem

5.1 are all about. (Theorem 4.1 establishes conditions under which a sequence of

homeomorphic subsets, called an interior approximation, of a compact metric

space is so nicely embedded that the space must be homeomorphic to the members

of the sequence. Theorem 4.2 shows that under certain conditions a subset A of a

product Xx Y of compact metric spaces is so well situated that an analogue of

the sequence of sets {ZJi" ± in the first try above forms an interior approximation

to Xx]~[i>0 Y{, so that AxVJi>o T¡ and Ixfloo T¡ are homeomorphic. The

conditions required by Theorem 4.2 grew out of the second insufficient approach,

and under them, A is referred to as a Y-approximation to X. The proof of this

theorem involves a complicated variant of the sequence of homeomorphisms

which did not work in the first try. Finally, Theorem 5.1 shows that Zx g as a

subset of Txlx g meets the conditions of being a g-approximation to Tx/.)

Because the proofs of Theorems 4.2 and 5.1 are a little complicated and in order

to illustrate the simple underlying geometric conception involved in the definition

of T-approximation, the following diagrams show the steps of the proof of Theorem

5.1 in the case of the triod. The terminology of these proofs is adopted for ease in

reference.

4. Approximations to compact metric spaces. In this section the approximation

method used later in §5 is developed. If X and Y are compact metric spaces, an

interior approximation to X by Y is a sequence {yt}," 1 of homeomorphic copies

of Y in X such that Z=lim inf {Ti},œ=1 (that is, for every e>0, there is an integer

A^ such that if i ¡2 N, then Y¡ is e-dense in X) for which there exists a collection

{a} u {j8f}¡™ lj£>0 u {yi,j}F=u = i,e>o of homeomorphisms as follows:

1. a is an embedding of X in the Hubert cube,

2. for each positive integer i and positive number e, ßf is an embedding of X

in the Hubert cube with d(ßf, a)á2_i, and

3. for each positive integer j, yft) is a homeomorphism of a(Yt) onto ßl(Yi+j)

with d(y¡j, id) ̂  e.

Actually, the choice of the embedding a of X in the Hubert cube may be arbitrary

in the sense shown below by Lemma 4.1.

Lemma 4.1. If { Y¿¡°m j is an interior approximation to X by Y and a is any em-

bedding of X in the Hilbert cube, then there is a subsequence {T(j}™= i of {Yt}¡°= t

which is an interior approximation to X by Y in which a' may be taken instead of a

in statement (1) above.

Proof. Let h : g ->■ g x / be the embedding x -> (x, 0). Now, Q x I is a Hilbert

cube, and by Lemma 2.2, both ha(X) and ha'(X) have Property Z in it. Hence,

by Theorem 2.1, there is an extension gof/ioa'o«"1« (A|ce(^r))_1 to a homeo-

morphism of g x / onto itself.
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For each e > 0, let 8(e) be a positive number small enough that if x and y are

in gx/and d(x, y)S 8(e), then d(g(x), g(y))áe. Also, for each e>0, let r¡e be a

homeomorphism of g x / onto g such that d(r¡e, pQ) S e.

Now, let {/,}"= i be a subsequence of the positive integers such that for each j,

2-ii^8(2-i-1). The subsequence {Ytl}°°=1 of {Y^i is the one desired.

In order to verify this, consider the homeomorphisms

{Ä}fti..»o   and   {yfir=1,,:1,,>o

postulated for {Y¡}¡°= 1 in the definition of interior approximation. For each/>0,

k>0, and £>0, let ß%a) = VmUiS) o go ho ß«*'2' and

yf.fc(«') = i*,£) ° g ° h ° rtX'.-i, ° « o a'-1,

where mij, e)=\ min {2_í, e}. These functions, together with a', satisfy the re-

quirements of statements (1), (2), and (3) in the definition of interior approxima-

tion. Statement (1) is satisfied because a is an embedding of X in g. Statement (2)

is satisfied because each ß*(a') is an embedding of X in g and

d(j8j(«'), «') = d(r,mu_e) o go ho 0Ç«»  a')

= d(r¡mU>e) ogoho $>W2>, pQogoh°a)

S   d(VmU,E), Pq) + d(PQ ogoho ßQ**, ^ a £ o A o a)

^ maO + ^oAojSÇ'^goAoa).

However, d(ß^sl2), a)^2~'t^8(2'i'1), so by the choice ofthat number and the

fact that h is an isometry, d(g oho ß^el2\ g o h o a)^2~'~1. Therefore,

d(ß%a'),a')^m(j,e) + 2-'-i ^2~'.

Statement (3) is satisfied because

(a) tf,k(a') o «'( Yi) = VmUif) og.ho yjffl»^ occoa'- !(«'( Yt)),

which is

+** ° g < h(ytf%%-t, » «(^)) - %. KM »f»A« 0?,<,/a)(lW = #(«')( >W>

and

rf(tf.fc(«'), id)

= d(VmV,e) ogoho yff^ + fc - </ ° <* ° "' " '» /'«J ° S ° « ° a ° a' ~ *)

(b) á d(r¡mliiE), pQ) + d(pQ ogoho ytj%2¿k _i'oaoa''1,pQogohoaoa'-1)

úel2 + d(gohoypXlk_i¡,goh)

ú e/2 + e/2 = e,

since d(yt}%2]k-it, id)g8(e/2) and S(e/2) was chosen so that d(g(x),giy))^e/2 if

¿(x, j) g e/2. The only thing left to verify in order to have {Yt)f= i an interior

approximation to Zby Fis that X=lim inf {Yi)f=1, but this is immediate.
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From Lemma 1 it is possible to show that if X admits an interior approximation

by Y, then Zand Tare homeomorphic, which is Theorem 4.1.

Theorem 4.1. If X and Y are compact metric spaces and there is an interior

approximation to X by Y, then X and Y are homeomorphic.

Proof. Let {Y?¡F=\ be an interior approximation to X by Y, with associated

homeomorphisms a, {¿Sf},™ 1>£>0, and {yij}¡°=if=i.e>o- A sequence {f}?Li of em-

beddings of X in g will be constructed inductively with Lemma 4.1 used to select

subsequences {, Y^fL i of {Y^^L x such that f may be the embedding of X in g

corresponding to a. In fact, the subsequences {yTJi™ i will be selected so that

{jYi}iLi is a subsequence of {j-1Yi}tL1. The embeddings of A'in g associated to

{i Y¡}iL i and analogous to {j8f}¡°°= 1 will be denoted by {jj8f}(°i 1>s>0, and those analogous

to {Yi.i}t=u=i.s>o will be denoted by {#?.*}<" i.*-i,«>q- Another sequence

{m, -*/••-'• °gi°a},°°=i

of embeddings of Y1 into Q will be defined at the same time as {f}fL i- The sequences

if ¡if-1 and {tttjlfm i will converge to homeomorphisms / and g onto a common

image, proving the theorem.

Let e0=2-3mm{d(a(x),a(x'))\x,x'eX,d(x,x')^l}, and let f1=ßl°. To

construct gu let

Si = 2"3 min {d(/i(jt),./i(jt')) \ x, x' e X and d(x, x') ^ $}•

Now use Lemma 4.1 to select a subsequence {x T,}^ j of { Yi}?L ! so that /i may be

taken in the place of a. Choose ix > 1 large enough that 2~'i ^ S1; and choose A:x

so that F^+i-iFij. Letg^yiV Now, g-,: a(Yx) -^f^YJ, and d(gu id)^e0.

To define/2, let ex > 0 be less than ^e0 and

2"3 min {¿(m^x), w^x')) | x, x' e Yi and J(x, x') ^ £}.

Let/a^/Jf*. Then, rf(/1,/2)^2"ii^81. Now use Lemma 3.1 to obtain a subse-

quence {2 y,}(™ j of d T,}¡" ! for which f2 may be taken in the place of a. Letting

S2 > 0 be less than ^ and

2"3 min {d(f2(x),f2(x')) \ x, x'e X and d(x, x') ^ 2~2},

select /2>/i so large that 2_i2^S2. If now k2 is chosen so that 1Til+fc2 = 2Ti2,

define g2 to be i.y\{,k2. Let e2>0 be less than §% and

2~3 min {d(m2(x), m2(x')) \x,x'e Tx and d(x, x') ^ 2~2}.

From the above, it is easy to see that one may proceed inductively to obtain

sequences {/,}"= x, {«,}£,*, and {jT^/Li such that

(1) /, embeds X in g,

(2) gy is a homeomorphism of «^(Fi) onto fd Ytj),
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(3) {¡Y^fLi is a subsequence of {Fjr=i,

(4) for each k>0, d(fj + k,fj + k-i) is less than

2-*-2 min {d(fj(x),f(x')) | x, x' e X; d(x, x') ^ 2~'},

and

(5) for each k>0, d(gj + k, id) is less than

2"k-2 mm (j(Wi(x)5 mj(x')) | x, x' e FiJ d(x, x') ^ 2~'}.

From (4) and (5) above, the sequences {f,)?= x and {m,}°°= 1 are uniformly Cauchy

sequences of mappings of X and Fj, respectively, into g and hence converge

uniformly to maps / and g of X and F1; respectively, into g. However, (4) and

(5) also guarantee that/and g are one-to-one and thus embeddings, for if x and x'

are distinct points of X, then there is a.j>0 such that d(x, x')^2'i, and (4) gives

that

d(f + k,f) Ï  2 d(f + m,fi + m-1) Ú 2-2d(f(x),fj(x')) 2 2-
m=1 m=1

< 2-WA),/(*'))•

■ Thus, d(f(x),f(x)) g 2 -2d(f(x),f(x')) and </(/(*'),f(x')) í 2 ' td(fJÜ,ffc)), so
d(f(x),f(x'))'¿%d(f1(x),f(x'))>0. The analogous proof demonstrates that g is

one-to-one.

For any £>0, there is a j >0 suchthut for j'tj, d(f, fr) ^ e/5 ana d(m„ mr) ¿ e/5.

Because A'=lim inf {Fj}," u there is aj'^j such that/(Fk) is (e/5)-dense mf(X)

for each k^j". Also, there is a ktij' such that ^ = ,.7^,. Combining these state-

ments, we have that for y in F1; there is an x in X such that/•(*)=#,. ° • • ■ o g1

o a(y) and that

d(f(x),g(y)) S d(f(x),f(x)) + d(fi(x),fr(x))

+ d(fr(x),mr(y)) + d(mj,(y),mj(y)) + d(mj(y),g(y)) < e,

and thus, g( Y^^f(X). On the other hand, for x in X, there is an x' in Yk for which

d(f(x),fi(x'))-¿e/5. For some .y in 7i,/(x) = w7.(>'), so

d(f(x), g(y)) Ú d(f(x),f(x)) + d(fi(x),f(x')) + d(fj(x'),f.(x'))

+ d(fr(x'), gro..-oglo a(y)) + d(gy -•■•»ft« a(y), g(y))

Ï d(fr(x'),m,(y)) + d(mr(y),g(y)) á e.

Hence f(X)<=g(Y1). Thus, g of'1 is a homeomorphism of X onto Yv As Fi is

homeomorphic to F, X is homeomorphic to F.

The final portion of this section develops an application of Theorem 4.1 to

product spaces in the form used in §5. In some vague sense, Theorem 4.2 may be

regarded as a "stabilization" theorem.

If Fifes F is a product, it is convenient to have a compact notation for the

"switching"  homeomorphisms  induced  by coordinate-permutations.  Thus,  if
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S={1, 2, 3, 4, 5} and the permutation of S leaving 1 fixed and exchanging the

members of the two pairs (2, 3) and (4, 5) is denoted by (2 3)(4 5), then

j(2 3X4 5): n y i —> n t¡
¡ = 1 i = l

is defined by s(2 3)(4 5)(yu y2, y3, yif y5) = (y1, y3, y2, y5, y*), etc.

For X and Y compact metric spaces, a closed subset Z of Xx Twill be termed a

Y-approximation to X provided that for each positive number e there is an embed-

ding ge of Xx Y in Z x g with d(pxgs, px) á e which satisfies condition (*) below.

(*) Let gE = si2 3)°(gsxidY):XxYxY=(XxY)xY^(ZxQ)xY=ZxQxY

-s-Zx Tx g, and, regarding Zx Y as a subset of Xx Yx Y, let Z=s<2 3)(Zx T).

There is a homeomorphism /z£ of ge(Z) onto Zx Y with í/(/>z ° ^s» />z) = e-

The effect of this definition, of course, is to guarantee a two-step move from

Z to Zx Tin which the motion is restricted in the .^-coordinate in the first step

and in the (Xx T)-coordinate in the second, and where, moreover, the first step

is a homeomorphism of the entire space Xx Yx Y. The first step will appear in

the construction of j8's, and the second, in the construction of y's for an interior

approximation.

Simple examples of T-approximations include the graphs of continuous functions

from X to Y, for if/is such a map and Z is its graph then given any embedding p

of Y in Q, the embedding g of A"x Y in Zx g sending (x, y) to ((x,f(x)), p(y))

will do for each ge and the homeomorphism h: g(Z)^-Zx Y sending ((x,f(x)),

f(x), p(y)) to (x,f(x), y) will serve for each he.

If Y is contractible, it is easily seen that any T-approximation to X must have

the same homotopy type as X. However, if Z is a T-approximation to X and Y'

is any compact metric space, then Zx Y' is a (Yx T')-approximation to X, so

this need not be true. In fact, from considerations already made, the torus is an

S ̂ approximation to S1 ( = the circle).

Theorem 4.2. IfZ is a Y-approximation to X, thenZxY\i>0 T¡ is homeomorphic

to Xx ]T[i>o Tf (where { Y,}i>0 is a collection of homeomorphic copies of Y).

Proof. Let Zi = {(x,y1,y2,...)eXxT\j>0 Yf \ (x, j2i) eZ}. It will be shown

that {Zj}j>0 is an interior approximation to A'xTl/x) Ty by ZxT\j>0 Ty.

Let z be the point of g = n¡>o^i with all coordinates zero. Identifying Xx

Yli>o Yt with XxTJi>o Yix{z}<=XxT~[i>o Y¡xQ, it is sufficient to consider

embeddings of XxTJi>0 T(x{z} in XxYJi>0 T,x g in order to exhibit an interior

approximation to XxT~[i>o T¡ by Zxjf7i>o T(. (This is because if g, g0, gi,...

are copies of the Hilbert cube, if pz: XxYJi>0 T¡ -> g is the constant map to z,

and if po : X -+ g0 and pt : T¡ -> g,, i > 0, are embeddings, then

«- ((mox n^<)>i0:*x n y^(q0x ne<)xô
\\ i>0       / I i>0 \ ¡>0 /

is an embedding into a Hilbert cube. This embedding may be used as the required
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a of an interior approximation with the other homeomorphisms constructed from

the image of a in the same way as is done below but with due care taken to adjust

the sizes of the constants involved.)

For a positive integer / and a positive number e, let k = k(i, ¿) be a positive

integer so large that 2~k is less than or equal to 2"1 min {e, 2~i~2}, and let <f>i¡s

be the homeomorphism of XxY~[t>0 Ytx Q onto itself defined by

<t>t.s(x, Oi, y»> •••),?) = (x, (y'i, y2, ■■■), q),

with

1. y'i=yj, if j^2i,

2. y'2k + 2i=y2i + 2j, ifj>o,

3- j2i + 2i=j2i + 2,-i, if l^jèk-l,

4. y'2i+2i-i=y2k+2,-i, if/>0.

Let R denote the real numbers, and for t e R, let

¡>0 i>0 i>0 i>0

be the map which changes no point's X- or (rit>o T¡)-coordinate and multiplies

each Ri coordinate by t.

If i is a positive integer, let rt(x, yuq, y2, y3, :. .) = (x, yt, y2,..., y¡-u yu

yi + 1, ...,q), and define gf = r2j°(g£/4x id) ° (id xs(12i)): XxY\j>0 Y¡x{z}(= Xx

Y\i>o Yj) -> Xx Y\i>o Yj x g. (The slight abuse of notation is adopted for clarity.)

In a similar manner, for / <j let

uu(x, y-L, y2,...,q) = (x, yu y» q, yx, y2,.. .,yt-x, yi + 1,.. .,JV-i> yj + i, ■ - • )

and

Vijx, yu y2,...) = (x,y3, j4,..., yi + 1, yu yi+2, ...,y¡, y2, yj+1, ...,z).

Then set heuj = viij ° (hsli x id) = ultj: gei(Zj x {z}) -> Z, x {z}.

From these definitions, it is possible to define ß\ and yf>;- as follows: Let

ßf: Xxjll>0 YiX{z}-+Zi + 1xQ be &»öff*i •&+!,„ and let yfy. Zi + 1x{z}

-+ßEt(Zi + j + 1x{z}) be ipeli o (/¡i + liy + Wi + 1,£))-1. (Of course, this is for e^4.)

These functions {/3f}(" 1>£>0 and {yei,j}r=i.i = i,s>o, for s^2_i, suffice to demonstrate

that {Zi + 1}j™ ! is an interior approximation to XxTJi>0 Tf by Zxfloo T¡. The

remainder of the proof is a verification of this.

In the first place, one need only consider, for each i, e small with respect to /,

that is, e^2_i. Because <£i + i,£, gf+1, and </>£/4 are all homeomorphisms, ßf is an

embedding of Xx Y~[l>0 Tf x {z} in Zi + 1.x g. Also,

d(ßf, id) = d(<fien °gf+1° <f>i + 1,s, id)

^ ¿Oo ° <££/4 °gí+i,Po) + ¿0¿i + i,£, id)

+ 2-2l-2dia(Y2i + 2) + d(pxogf+1,Px)

CO

£ £/4+ 2 2-2i-2-i + 2-2i~2 + e/4
1=1

= e/2+2-2'-1 < 2-f-l + 2-i"1 = 2-K
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Concerning yfti = fa:í o (Af +1 >y + m + x >e)) S it carries Z¡ + j x {z} onto 0f (Z, + j + 1x {z})

because

#(2, tjtlx {z}) = fatl °gf+1ofa + le(Zi + j + 1x {z})

= fan ° gt+ i(Zmtuit/X {>})

= fali(gi + l(ZkU + l ,e) + i X {Z}))

= ^((Ai+i.wf + i.^ + ̂ 'K^i + i x{z}))

= yf,/zi+1x{z}).

Finally,

¿(yf,„ id) g úf(/?x x y2i ° yfj, Px x Y2i)

+ 2-2k« + 1-»-21 dia(Y2m + 1,s) + 2,) + d(pQ o yi, Pe)

S £/4 + 2-2Wi + 1-e)-2í + e/4

¿ e/4 + e/2 + e/4 = e.

Thus, {Zi + 1}°°=1 is an interior approximation to Xx]~[i>0 Ff by Zxrj.i>o ^¡. and

by Theorem 4.1, XxYJi>0 F4 is homeomorphic to ZxFL>o F-

5. Products with the Hubert cube. Here the apparatus of the previous two

sections is used to study products of compact metric spaces, primarily of compact

polyhedra, with the Hubert cube.

Theorem 5.1. If X= Q1 u g2, where Qu Q2 and ga n g2 are all Hilbert cubes

and Q1 n g2 has Property Z in Qly then XxQ is a Hilbert cube.

Proof. Let Z=(Q1x{0}) <u (Q2xI)<=XxI. It will be shown that Z is an /-

approximation to X. Theorem 4.2 then will yield that Zx g and Xx Q are homeo-

morphic. However, Z is easily seen to be a Hilbert cube itself, for it is the union

of two Hilbert cubes which intersect in a third (Qx n g2) x {0} with Property Z in

each. (By hypothesis on the one hand and by Lemma 2.2 on the other.) Thus,

there are homeomorphisms 9, r¡, and £ of Q1 x {0}, g2 x /, and g3 x {0} (where

g3=ging2) onto [0, i]xg, [|, l]xg, and {i}xQ, respectively. Because

Property Z is a topological invariant, 6(Q3 x {0}) and ij(g3 x {0}) have Property Z

in [0, |] x g and [\, 1] x g, respectively. Lemma 2.2 shows that {^} x g has Property

Z in each, so by Theorem 2.1, there exist homeomorphisms A and p of [0, \\ x g

and [\, l]x g onto themselves, respectively, such that A|0(g3x{O}) = £ o 0"1 and

At|7)(g3x{0}) = £ or]'1. Then the function v.Z-^IxQ defined by

v(x) = A o d(x),   if x e Q1 x {0},

= p o r¡(x),   if x e Q2 x I

is a homeomorphism onto a Hilbert cube. Since Z is a Hilbert cube, so is Z x g

and, hence, XxQ.

Let, now, / and L, as well as /, denote [0, 1 ]. In the proof that Z is an /-approxi-

mation to X, it will not be necessary to use more than an interval of the "room"
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provided by g in the definition of F-approximation above, so L will be substituted

for g here for the sake of simplicity. For each e > 0, then, there must be an embed-

ding ge of Xxlxjx{0} in ZxJxL with d(px oge,px)<¡e such th&t pj °ge=pj

and a homeomorphism hs of gs(Zx {0}) onto Zx/x {0} with d(pxx¡ ° he,pXx,)^e,

where Z={(x,s, t) e Xxlxj \(x,t)eZ}.

Fix e>0, and construct a retraction/ of Xxl onto Z as follows: Since g3

has Property Z in Qu there is a homeomorphism of compact pairs (g3, gj)

*> (g x {0}, g x /). Now consider the retractions rx and r2 with

ri:IxI->(Ix{0},{0}xI)

defined as the projection from the point (1, 8_1) for some small S>0, and

r2 = idx/v gx/x/-> gx/x{0} u gx{0}x/.

For small enough 8, d(pQ x¡ ° r2,pQx,) is as small as may be required. Finally,

carry r2 over to Qyxl by the homeomorphism </>xid, obtaining (^_1xid)or2

o((f>x id), and extend over g2 x /by the identity to obtain/ With S = S(e) sufficiently

small, d(px °f,Px)^^, so/, may be set equal to/for an appropriate choice of 8.

Define gs: XxIxJx{0}->ZxJxL by

gs(x, s, t, 0) = (fs(x, s)x,fe(x, s)„ t, s-fe(x, s),).

By construction,  d(px ° g„ px) ?£ e,  since d(s, pö<s)(s, t)) á 8(e) for all (s, t) in

hxl.

To define hs, first let as be a homeomorphism of

{(s,t)eIxL\ 0 ú t Ú l-s}

onto IxL with úf(j?; ° ae,p,)^e/2 which is the identity on ({0}xL) u (/x{0}). Let

<*e: g£(Zx{0})->Zx/xL be the extension of aE by the identity in the other

coordinates, that is, px o ¿e =px and p3 ° äe =p¡.

Now, äsogs(Zx{0}) = (Q2xIxJx{0}) u (glX{0}x{0}xL) u (g3x/x{0}xL).

Here, the map which replaces the /.-coordinate by zero and adds it to the J-

coordinate carries ás o ge(Zx{0}) onto Zxjx{0} and commutes with the projection

onto Z x /, so its satisfies all the requirements for hs but that of being a homeo-

morphism. Finding a homeomorphism whose projection onto Z x / is close to the

direct projection is made possible by Theorem 2.1. It is described in Diagrams

3, 4, and 5 in the case that X is the product of a triod with the Hilbert cube (âe is

also included in Diagram 3).

Since g3x/x{0} and g3 x{0}x/have Property Z in g3 x/x/and in Q2xIxJ

so does their union, and by the same method used in showing Z to be homeomorphic

to the Hilbert cube, there is a homeomorphism 4> of Q2xlxj onto Q3xIxJ

which is the identity on (g3 x / x {0}) u (g3 x {0} x J). Let $ be the homeomorphism

of (g3x/x{0}xL)u(g2x/x/x{0}) onto (g3x/x{0}xL) u (g3x/xJx{0})

obtained by extending </i by the identity in the L-coordinate.
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Let A(e) e(0, e/16) be small enough that for x and x' in (g3x/x{0}xL)

u (g3x/x/x{0}) with d(x, x')^2X(e), d(4>-\x), j-^x'^^eß, and let

ßs: (/x/x{0})u(/x{0}xL)^/x/x{0}

be a homeomorphism satisfying the following:

(1) j8£ is the identity on [X(e), 1] x [A(£), 1] x {0},

(2) ße(({s}xJx{0}) u ({s}x{0}xL)) = {s}xjx{0}, for each sä A(£), and

(3)/Se({0}x{0}xL) = {0}x/x{0}.

Letj8£: (g3x/x/x{0}) u (g3x/x{0}xL) -> g3 x / x J x {0} be the extension of

ß£ by the identity in the ^-coordinate. Now consider ¡/i-1 o^£o¡/¡: a homeomorphism

of (g2x/x7x{0})u(g3x/x{0}xL) onto g2x/x/x{0}. No point of g3x/

xJx {0} is moved by ße unless it is within 2A(£) of some point of

(g3 x/x {0} x {0}) U (g3 x {0} x/x {0}),

which lies in the fixed-point set of $. Hence, for any point x of g3x/x/x{0},

d(ßAx), >p-1°ßs(x))^2Eß = e/4. Also, for any point x in g3x/x{0}xL,

d(Pxx¡ ° ßs(x), Px x ¡(x)) á X(e) and ße(x) is within 2X(e) of the fixed-point set of <J>.

Therefore, ßs(x) is moved at most a distance of e/4 by $_1. Adding these state-

ments yields d(pXx, ° ^_1 o ßs o ¡/i, pXxI)^£¡4 + X(e)^e/2. Extend >p~1°ßs°>p to

ôi x {0} x {0} xL by sending (x, 0, 0, /) to (x, 0, |3£(0, t)}, 0), (this is a continuous

map because the function fi'1 ° ßs ° $ reduces to this formula on g3 x {0} x {0} x L),

and call it ys. The image of y£ is (Q1x{0}xjx{0}){u (Q2xlxjx{0}), which is

ZxJx{0}, and d(pXx, o ye,pXx,)^e/2. Let /¡s = y£°ä£. Then he: ge(Zx{0}) ^

ZxJx{0} and d(pXx, ° h£, pXxI)^d(pXxI ° ye, pXx,) + d(pXx, o áe,pXx!)^e/2 +

e/2^e. Therefore, Z is an /-approximation to X, and Xx g is homeomorphic

to Q, as noted earlier.

A polyhedron is a space homeomorphic to a geometric simplicial complex.

Compact polyhedra are homeomorphic to finite geometric simplicial complexes.

A homeomorphism from a geometric simplicial complex K onto a polyhedron X

is said to define a triangulation of X by K. If K is a finite geometric simplicial

complex and L is a subcomplex of K such that K\L = A° u A'° where A is a simplex

of K not contained in any other simplex of K and A' is a proper face of A which

lies in no other simplex of K, then K is said to collapse to L by an elementary

simplicial collapse. If T is a subpolyhedron of the compact polyhedron X, and if

there is a finite geometric simplicial pair (K, L) such that K collapses to L by an

elementary simplicial collapse and a triangulation /: (K, L) ->- (X, Y), then X is

said to collapse to Y by an elementary collapse. A finite sequence of elementary

(simplicial) collapses is called a (simplicial) collapse, and the initial polyhedron

(geometric simplicial complex) is said to collapse to the terminal one. If the termi-

nal one is a point, the initial one is said to be collapsible. Two compact polyhedra

X and Y are said to be of the same simple homotopy type if there is a finite sequence

Xx, X2,..., Xn of polyhedra with X homeomorphic to Xx and Y homeomorphic
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to Xn such that for each i = 1,..., n — 1, either Xx collapses to X¡ +1 by an elementary

collapse or Xi + 1 collapses to Xt by an elementary collapse.

Corollary 5.1. The product of a collapsible polyhedron with the Hilbert cube is a

Hilbert cube.

Proof. By induction on the number of elementary collapses necessary to reach

a single point, it is sufficient to show that if A'and Fare compact polyhedra and X

collapses to F by an elementary collapse, then Xx g is a Hilbert cube if Fx g is.

However, cl (X\ Y) is an «-cell, for some n>0, and cl (A"\ Y) n Fis an (n — l)-cell

in the boundary of cl (X\ Y). Therefore, by Lemma 2.2, cl (X\ Y) n F has Property

Z in c\(X\Y), and by Lemma 23,(d(X\Y)n Y) x g has Property Zinc\(X\Y)x Q.

Finally, all three of cl (X\Y)xQ, Fx g, and (cl (X\Y) r\ Y)xQ are Hilbert

cubes, so by Theorem 5.1, (Jix g) x g is a Hilbert cube. Since (Xx g) x g is

homeomorphic to Xx Q, Xx Q is a Hilbert cube.

Corollary 5.2. If X is a polyhedron which can be triangulated by a locally

finite simplicial complex, then the product of X with the Hilbert cube is locally

homeomorphic to the Hilbert cube.

Proof. Every point of _X has a compact neighborhood which is a collapsible

polyhedron, so by Corollary 5.1, each point of Xx g has a neighborhood which is

homeomorphic to the Hilbert cube.

The next (Corollary 5.3) appeared as Conjecture 2 in [9] and as such is attrib-

uted to R. D. Anderson. It is the converse of a theorem of D. W. Henderson, who

proved in [10] that each open subset of a separable, infinite-dimensional Hilbert

space is homeomorphic to the product of that space with a countable, locally

finite, simplicial complex.

Corollary 5.3. If X is a polyhedron which can be triangulated by a countable,

locally finite, simplicial complex and if H is a separable, infinite-dimensional Hilbert

space, then XxH is homeomorphic to an open subset ofH.

Proof. R. D. Anderson showed in [2] that H is homeomorphic to s, the count-

ably infinite product of lines, and in [3] that s x g is homeomorphic to s. (Bessaga

and Klee in [6] have also shown this last.) Thus, Hx Q is homomorphic to H and

Xx His homeomorphic to (Xx Q) x H, which is, by Corollary 5.2, locally homeo-

morphic to QxH, or H. However, XxH is now a separable, paracompact H-

manifold and, by a theorem of Henderson [11], thus homeomorphic to an open

subset of //.

Since work by N. H. Kuiper and D. Burghelea [12] together with work of N.

Moulis [13] has shown all homotopy-equivalent open subsets of separable, infinite-

dimensional Hilbert spaces to be C°°-diffeomorphic, Corollary 5.3 shows

Corollary 5.4. If X and Y are polyhedra which can be triangulated by separable,

locally finite, simplicial complexes, and if H is a separable, infinite-dimensional
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Hilbert space, then XxH is homeomorphic to YxH if X and Y are of the same

homotopy type.

Remark. In the above, one may substitute "separable, infinite-dimensional

Fréchet space" for "separable, infinite-dimensional Hilbert space" because all

such spaces have been shown to be homeomorphic. (A bibliography and brief

discussion of the results may be found in the introduction of [5].)

Theorem 5.2. If X and Yare compact polyhedra of the same simple homotopy type,

then Xx Q is homeomorphic to Yx Q.

Proof. It is sufficient to show that if X collapses to Y by an elementary collapse,

then Ix g is homeomorphic to Tx g, so suppose/: (K,L)-^-(X, Y) is a tri-

angulation of (X, Y) such that K collapses to L by an elementary simplicial

collapse. Let (A, A') be the pair of simplices of K determining the collapse. It is

easy to see that there is a polyhedral neighborhood C of cl (X\ Y) in X which

collapses to cl (X\ Y) and whose (topological) boundary, cl (X\C) n C, in X has

Property Z in C. One way to see this is to take the piecewise-linear function

g: K-^-1 which sends each vertex of A to zero and each vertex of K\A to one.

The neighborhood C may be set equal to/° g_1([0> |]), for K may be subdivided

in such a way as to yield g-1([0> i]) as a subcomplex, g_1([0> £]) collapses to A,

and the topological boundary g ~ *(%) of g ~ 1([0, $]) in K has Property Z in g ~ x([0, ̂ ]),

(by Lemma 2.2, as it is even collared in g-1(IP> ^]), that is, there is a homeomor-

phism of a neighborhood of g_1(i) in g_1([0, i]) onto g~\\) x [0, 1] carrying each

point x of g "Hi) to (x,0)).

Since C collapses to C n Y which collapses to cl (X\ Y) n Y which collapses to a

point, Corollary 5.1 gives a homeomorphism 0 of (C n T) x g onto g and a

homeomorphism £ of Cxg onto g. By Lemma 2.3, (cl (X\C) n C) x g has

Property Z in C x g and in (C n Y)x g, so

0((cl (X\C) n C) x g)   and   £((cl (Jr\C) n C) x g)

have Property Z in g. Therefore, by Theorem 2.1 there is a homeomorphism r¡ of

g onto itself extending 0 ° £-1|£((cl (X\C) n C) x g). Now, 0"1 o v o £ is a homeo-

morphism of Cx g onto (Co T) x g which is the identity on (cl (X\C) nC)xQ

and so may be extended to a homeomorphism of Xx g onto Yx Q.

Corollary 5.5. If X and Y are simply connected compact polyhedra of the same

homotopy type, then Xx Q is homeomorphic to Yx Q.

Proof. For simply connected compact polyhedra, the concepts of homotopy

type and simple homotopy type coincide [15].

Corollary 5.6. The product of a compact contractible polyhedron with the

Hilbert cube is a Hilbert cube.
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Remark. It is possible to generalize Theorem 5.2 in the following way: Let K

be a locally finite simplicial complex and let {(A„. à'a)}a be an indexed collection of

pairs of simplices of K, each of which determines an elementary simplicial collapse

of K. Let L = K\{Ja (A° u Aá°), and say that L is obtained from K by a formal

contraction. In analogy to the definition of simple homotopy type for compact

polyhedra, say that two polyhedra X and F which may be triangulated by locally

finite simplicial complexes are formally equivalent if there exists a sequence X=XU

..., Xn= Y of polyhedra and triangulations Jft: K^-*-Xt, i= 1,..., n, by locally

finite simplicial complexes such that for each i= 1,..., n— 1 there is either a formal

contraction of K¡ onto a subcomplex L¡ with /(/-O =/ + iCKi + 1) or a formal

contraction of Ki + 1 onto a subcomplex L¡ + j with/(A¡)=/ + 1(Li + 1). (This definition

follows J. H. C. Whitehead in [16].) The generalization of Theorem 5.2 is that for

two polyhedra A^ and X2 which are formally equivalent and may be triangulated

by locally finite simplicial complexes, XxQ and Fx g are homeomorphic. It is

not difficult to prove this. The necessary modifications of the proof of Theorem 5.2

are (1) to observe that the hypothesis of local finiteness for a (geometric) simplicial

complex forces the components to be separable and locally compact. As the

homeomorphism may be constructed component by component, the problem is

immediately reduced to this case. (2) The neighborhood C in the proof of Theorem

5.2 may be chosen inside any other given neighborhood of cl (X\ Y) in X. (3) Thus,

it is possible to break up {(Aa, A^)}a into a countable collection of finite sets of

pairs {v4(}," ! such that for each /" there is a neighborhood £/¡ of

U {Aa u A; I (A„ A;) e A,}

in X such that Ut is a compact polyhedron and í/,n U¡= 0 if \i—j\ > 1. Now, for

each i, it is possible to make a homeomorphism of U2i x g onto

({72i\U {A° u A'; I (A., Ai) e At}) x Q

which is the identity on (cl(X\U2i) n U2i)x Q. As these homeomorphisms are

defined and supported on disjoint domains, they may be taken simultaneously

to define a homeomorphism of Xx Q onto

(jr\u {as u a;° i (a„ a;) g fLM*}) x Q.

Analogously, one may then define a homeomorphism of this space onto

(ir\U {k u k° i (Ae> a;) e 0 *<}) x g.

A simple induction then finishes the proof.

Infinite products. Let X be a metric space and {Xt}j°= t an indexed collection of

copies of X. If F is another space, the product FxfT¡>o Xt will be said to be

strongly homeomorphic to Yli>o X provided that for each e>0 there is a homeo-

morphism gs of Fx n¡>o Xi onto rii>o Xt so that for each y in F, the diameter of

Pi ° ge ° Py 1 o (y) is less than e.
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The next theorem is an unpublished result of R. D. Anderson [1]; the proof

given here was constructed by the author as a class exercise at Louisiana State

University in February of 1966.

Theorem 6.1. Let X be a compact metric space and {X¡}?L u a countably infinite

collection of copies of X. If {Y¡}F=1 is a countably infinite collection of compact

metric spaces with for each j, Y, x Fit>o X¡ strongly homeomorphic to Yli>o X{,

then Tli>o Yt is homeomorphic to Ylt>o Xt.

Proof. According to the conventions concerning metrics, each space Xt or Y¡,

considered separately, is equipped with a normalized metric, but for x and x' in

T,xn,>,*i, d(x,y) = 2->d(pj(x),pj(x')) + Zi>J2-id(Pi(x),pi(x')). This should be

kept in mind when considering the subsequent choices of constants.

Let g]_: Y1xY\i>1 Xi-^Yli>o Xt be a homeomorphism such that for all y in

T1; dia (pi o g1 o pïl(y))<%. Then for any pair x, x' of points of n¡>o X¡ with

d(Pi(x),p1(x'))^^,p1 ° g~í(x)^p1 o gï^x'). Thus, for x and x' in rL>o Xt with

d(x, x') ^ f = i + i 2; i + dia ( f| XX   d(Pl(x),Pl(x')) ä \,

and pj, ° gl- \x) +px ° g{ \x').

Select an integer n2 > 1 large enough that

2-»» Ú min{d(gr\x),gri(x')) \ d(x,x') £ 2~2}.

Now, because dia (I7i>n2 + i Xi)^2'n2~1, it must be true that for x, x' e Yl¡>o X¡

with

n2 + l

d(x,x')^i,±d(Pl° gr Kx), Pl o gr !(x')) + 2 2 - '</(p, o gl- \x), Pi o gl- \x'))
¡ = 2

^ 2"n2_1.

Let {giJîïV be homeomorphisms of Y¡xTJj>n2 + 1 X} onto XixYlJ>n2 + i Xt,

respectively, such that for each y in T(, dia (/?t o f¡ opr1(y))<21~n2¡n2. Let g4 be

the extension of gx to a homeomorphism of PI/-1 Í0xilí>t X¡ onto F/B-i ^y

xfl/si-iG by the identity in the other coordinates. If, now, x and x' are in

Yli>oXi with d(x, x')^i, then either^ ° gi_1(^)/Pi ° gi_1(*'), or

112 + 1

2 2-«</(/>, o gr\x), Pt c gl-Hx')) &2-V»,
i = 2

in which case for some f, 2~id(pl ° gî\x),Pi °gî1(x')) ä 2~n^~1¡n2, and so

¿(a ° ¿Hrd.A ° srV)) S 21-2/«2.

Since pt o g^ »•■•og1-1=Ao gl-\

d(Pi » gr-\ <>•'•• ° gf \x), Pi o gi-_\ o ... o ££• *(*')) ^ 21 "»a/Ma,
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and Pi o g,~i o... o g£- \x) ¿pi o g-1 o . ■ ■ o gj- \x'). Because pt ° gj1 =pt for each

j>i, this shows that gña\i ° • •• °gf X*) and gna+i ° ••• °gf H*') differ in some

F-coordinate, 1 ̂  i ̂  n2 +1.

Now, there exists an integer «3>«2+1 such that for x and x' in rii>o Xi with

d(x, x')^2~3, then

¿tói « ■ • ••gîHx\fi?*\ ° ■ ' ogîKx')) ï£ 2""3.

The stage is now set for an inductive construction of a collection {g(}¡™ i of

homeomorphisms with each g¡ being a homeomorphism of TVí=i YjxYl}>i Xt

onto YVj = ï YjX Fi/ai -^i for which p¡ ° g, =/?,, if j < i, such that for any e > 0 there

is an integer ne with the property that for x and x' in Fli>o X{ with d(x, x') = e>

áfns+1 ° ■ ■ • ° gï r(x) differs from g~E+ i ° • • • ° gf 1(jc') in some Frcoordinate with

j^ns+l. For any such collection {g(}¡™i, the function g: EIoo -^i —*■ Ot>o ^i

defined by pt o g=p¡ o gf1 o ■ ■ ■ o g^1 is easily seen to be a homeomorphism.

The next theorem is a sharper version of Theorem 6.1 for the setting of the Hilbert

cube (that is, if X=I). It is made possible by the homogeneity theorem of Anderson

(Theorem 2.1).

Theorem 6.2. A countably infinite product of nondegenerate spaces is a Hilbert

cube if the product of each space with the Hilbert cube is.

Proof. Theorem 6.1 reduces the problem immediately to that of showing that

if {Xi}?=1 is a collection of nondegenerate spaces such that for each i^ 1, Xt x Q is a

Hilbert cube, then Ylt>o Xtx Qis strongly homeomorphic to /x g. This is because

then given any such collection {X(}¡°=1, it may be written as the union of infinitely

many, pairwise disjoint, infinite subcollections Aj = {Xljlc}k = 1. Then n¡>o Xt is

homeomorphic to Ylj>o(Ylk>o Xijk), which by Theorem 5.1, would be homeo-

morphic to Q = Yli>oIf

In order to see that n¡>o Xt x g is strongly homeomorphic to IxQ, it is first

necessary to observe that it is homeomorphic to /x g. This is a simple matter, for a

"refactorization" as in the preceding paragraph gives g homeomorphic to

n¡>o ôi. with each g, a Hilbert cube. Then Flo o Xtx g is homeomorphic to

rii>o Xt x r]i>o g¡. which is homeomorphic to Tli>o (Xi x g(), which, by hypoth-

esis, is homeomorphic to rL>o g» hence to g and to IxQ.

Now, each point x of Yli>o X{ has Property Z in n¡>o Xt. This is because for

each i, Xt must be contractible. The contractibility of each Xt yields for any

e>0, a homotopy Fe from the identity map of Y\i>o Xt to a map of rii>o X(

into YJi>o X¡\{x} such that for each point y of rL>o Xu dia (Fs({y} x I))<e. (To

construct Fe, merely select an i large enough that 2"'<e and a contraction

G: Xtxl-+Xf with G(z, 0)=z for all z in Xt and G(Xix{\})=z0^pi(x). The

natural extension of G to a homotopy on F]i > o Xt by the identity in the other

coordinates will do for Fe.) Lemma 2.2 now gives that x has Property Z in Tli>o X{.
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By Lemma 2.3, for any point x of n*>o X¡, the Hilbert cube {x} x g has Property

Zin n¡>o X{x g. Fix, then, x in Y\l>0 X¡ and let £>0. By Theorem 2.1, there is a

homeomorphism h of fit > o X{ x g onto / x g carrying {x} x g onto {0} x g. Let

n be an integer large enough that 1/n<e/2, and select a sequence l = 80>81> ■ • ■

>Sn_!>Sn = 0 such that the projections of {h ~ 1({8i} x g)}"= 0 into n¡>o X¡ are

pairwise disjoint. Define g£ to be a homeomorphism of / onto itself carrying each

8, to (n — i)/n, and let ge be the homeomorphism of Ix g onto itself which is the

extension of g£ by the identity in the g-coordinate. Let /£=g£ ° h: fli>o X¡x g

->/x g. If z is any element of n¡>o Xt, then z is in at most one of the sets

p Xt ° A"1({8(} x g), with /> the projection to Ili>o X¡, so {z} x g meets at most two

of the sets h~x([8t + 1, 8¡] x g), z' = 0, ■ ■ -, n— 1, and those must intersect. Therefore,

Pi »fjm xQ) = g.°Pio h({z} x0c gs((8i + 2, 8,)) = (ÎL=^' ^)>

for some i=0,...,»—2. But (n — i)¡n—(n — i—2)/n = 2\n<e, so dia (p, °/£({z}x g))

<s for each z in rL>o Xt. Therefore, n¡>o X¡x g is strongly homeomorphic to

/x g, and the theorem follows.

Corollary 6.1. The product of a countably infinite collection of (nondegenerate)

compact, contractible polyhedra is a Hilbert cube.

The next theorem was also announced by Anderson in 1964 [1].

Theorem 6.3. The product of a countably infinite family of dendra is a Hilbert

cube.

Proof. By Theorem 6.2, it will suffice to show that the product of a dendron

with the Hilbert cube is a Hilbert cube, so let Xbz a dendron.

According to Whyburn [17], there is a countable collection (which may be

assumed infinite) {c«i}r=i of arcs whose union is dense in X and for which,

ai n (U5 = ï ai) = {aè-> an endpoint of ai( f>I. Furthermore, lim¡_oo dia (a¡) = 0.

Also, the metric on X may be taken to be convex in the sense that if x, y, and z

are in X and y separates x from z, then d(x, y) + d(y, z) = d(x, z).

(See Bing [6] for the construction of convex metrics for finite-dimensional

Peano spaces. In the simple case of a dendron X, one may be constructed by em-

bedding X in rioo U in such a way that c^ goes to Ix x Y\i>i {0}i, that a2 goes to

{/>!(im (a2))} x I2 x Hi > a {0}¡, etc.... )

Let/ be a homeomorphism of Fljx) h onto ^ x Y\j>0 I¡. Now set 8^ >0 small

enough that for x and x' in Y\i>o h with d(x, x')^.2~1, d(f1(x),f(x'))'^8l. Let n1

be a positive integer large enough that 2"ni^81/2. Now for x and x' in rii>o h

with d(x, x')^2'1, either/(x) differs from/ix') in an /rcoordinate withy'^Hi or

d(Px °fi(x),px °fi(x'))'¿:81/2. A sequence {/},"! of homeomorphisms will be

constructed with the intent that lim1_00/< ° • • • °/ will define a homeomorphism

of ily>o^onto Xx]~[j>0 Ij. For each y'>!,/>, °/will bept for iúnu soin order to
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ensure that in the limit, x and x' are carried to different points, it will suffice to

guarantee that two points ofa^n^o h differing in the X-coordinate by as much

as 8J2 cannot in the limit be carried onto points with identical X-coordinates.

Let f2 be a homeomorphism of <*ixYli>oIj onto (ax u ot2)xrL>o h which

changes the /-coordinate of no point if j^nu and is the identity off the open

(81/8)-neighborhood of {a2} x TJ/ > o h- (This may be done by the same method

used in the proof of Theorem 4.2.) If, now, x and x' lie in a1xrTj>o-^ with

d(px(x), px(x')) ä Sj/2, then at least one, say x, is left fixed by /2. If a2 separates

px(x) from px of2(x'), then

d(px(x),px°f2(x)) = d(px(x),a2) + d(a2,pxof2(x')) ^ d(px(x),a2)

2: (8J/2)-S1/8 = 38J8.

If, on the other hand, a2 does not separate them, then d(px(x),px of2(x'))^.(81/2)

-â1/4 = 81/4.

Let S2>0 be small enough that for x and x' in Y\i>oh with d(x, x')~^2~2,

d(f2of1(x),f2ofi(x'))~^82. Assume, too, that 82¿¡2~281 and that if a3=£a2, then

82<d(a2,a3). Now let n2^nt be an integer large enough that 2~n2^82/2. Let/3

be a homeomorphism of (aj u <*2)xri/>o h onto (U?=i ai)xn>>o h which

changes the /^-coordinate of no point if/'^«2 and which is the identity off the open

(82/8)-neighborhood of {a3}xrL>o^y ^ x and x' he in (aiu «2)xrij>o^ with

d(x, x') £ 82/2, then at least one, say x, is left fixed under f3, and d(px(x), px °f3(x'))

= d(px(x), Px(x')) — 82/4 for the following reasons : if px(x') is in that component

of the (S2/8)-neighborhood of a3 in ^ u a2 which contains a3, then px °f3(x')

must lie in the union of that set with a3. This is because /3 is the identity off the

product of the open (S2/8)-neighborhood of a3 with \~[i>01¡. Hence,

d(Px(x), Px °fa(x')) £ d(px(x), a3) + d(px °f3(x'), a3),   if a3 separates them,

^ d(px(x),a3)-d(pxof3(x'),a3),

if a3 does not separate them.

In either case,

d(Px(x),Px°f3(x')) ^ d(px(x),a3)-82ß

^ d(Px(x), px(x')) - d(Px(x'), a3) - 82/8

^ d(Px(x),px(x'))-82/4.

As S^^Sj, iSa^rV^ij ifx and *' are in Ply>o h with d(x, x')^2'1, then supposing

that^y °fi(x)=pj °fi(x') for all 1 ̂ j^nu we have

d(Px 0/3 °/2 °fi(x%Pï »/s °/2 °A(x')) ^ BJ2-BJ4-8J16.

By induction, one may construct {/}(" 1 so that

(1) there is a sequence {8(}(" j of positive numbers, with

8i + 1 ^ min ({i8l}u{d(al, at) \ at * a,}),
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such that for x and x' in ITî>o h with d(x, x') S: 2~\

d(fi°---°f1(x),fio..-of1(x>))^ Si,

(2) there is a monotonie sequence {«Jj™ i of positive integers such that 2~ni

^ S4/2, and

(3)/ is a homeomorphism of (U5 = i ai)xT\i>o h onto (U5 = i «j)xrií>o h

which is the identity off the product with ri/>o h of the open (8¡ _ 1/8)-neighborhood

in Uï=Î ai °f ai a"d which has the property that/?; °/=Pj ify'^nj-i.

Because of the fact that lim^co dia (a¡) = 0 and the fact that condition (2) forces

{«i}i"i to be unbounded, condition (3) and the definition of X give that

{/ ° • ■ • °/i}i°°=i is uniformly Cauchy. The fact that U"=i «■ is dense in X together

with the fact that / ° • • • °Z(nL/>o ^) = (U"=i <«t)xri/>o / and the uniform

Cauchiness of {/ ° • • • °f1}f= i yields that^hm^^/ » • • • o/: ¡s a map of\\i>o I]

onto XxY[j>oh- Therefore, in order to establish that/is a homeomorphism,

there only remains to show that it is one-to-one. However, if x and x' are in

ri/>o h and if i is a large-enough integer that 2~^d(x, x') then

d(fio---of1(x),fio...of1(x'))^ 8t.

Since 2""i^-2-Sj and since dia (Y]j>n. Ij) = 2~nt, either there is a j^nt for which

Pi "ft " • • • °fi(x)¥=Pi °/ « • • • °/i(0 or

d(Px oft o ... c/(x), Pxofo... of(x')) £ 8,-2-. 2: iS4.

In the former case, condition (3) guarantees that Pj°f(x)^Pj°f(x') and hence

f(x)^f(x'). In the latter case, observe that for all k> 1, for y and z in (Um=i am)

xUi>o I, with d(px(y), PxOO)^ 8k-i/2, the distance rf(>x °fk(y),Px °/*00) from

the Z-coordinate of/XjO to that offk(z) is greater than or equal to d(px(y), px(z))

— (Sk-i/4). (The verification of this is exactly like that of the special cases k = 2,3

considered before: At most one, say z, of y and z is moved byfk, as both cannot be

within 8l_1ß of {ak}xYlt>o h simultaneously. If ak separates px(y) frovnpx °fk(z),

then

d(Px(y),Px°fk(z)) - d(px(y), ak) + d(ak, px °fk(z))

^ d(Px(y), ak)

^ d(Px(y),Px(z))-d(px(z),ak)

^ d(px(y),Px(z))-K-iß.

lfak does not separate px(y) from/?* °fk(z), then px °fk(z) is in the open (S^j/S)-

neighborhood of ak, so d(px °fk(z), px(z)) á 8k_1/4, and hence

d(px°fk(y),px°fk(z)) ^ d(px(z),pxofk(y))-d(px(z),px°fk(z))

= d(px(z),px(y))-d(px(z),px °fk(z))

2: d(Px(z),px(y))-8k_1/4.)
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Therefore,

d(Pxof(x),Pxof(x')) ^ 8,/2- 2 V4
i=i

^ S./2- 2 2-2-2-2«-i)8i

£(8,/2)(l-i S2"2i) = V6>0.

Therefore,/is a homeomorphism and the theorem is proved.
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