COEFFICIENT ESTIMATES FOR DIRICHLET SERIES

BY

W. T. SLEDD

1. Introduction. The primary purpose of this paper is to study coefficient estimates of Dirichlet series

\[f(x) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n x), \quad \lambda_n \to \infty, \quad 0 < \lambda_1 < \lambda_2 < \ldots, \]

for which the sequence \(\{\lambda_n\} \) satisfies certain lacunarity conditions. D. Gaier [2] has used such estimates in one of his proofs of the high-indices theorem for Borel summability, in which results on the order of an entire function are inferred from its rate of growth along the real line. A by-product of his work is the estimate

\[|a_n| \leq 2\lambda_n \|p_n\|_1 \] when \(\sum \lambda_n^{-1} < \infty, f \in L^1(0, \infty) \), and

\[p_n = \prod_{k=n}^{\infty} \frac{\lambda_k + \lambda_n}{\lambda_k - \lambda_n}. \]

Some subsequent papers in much the same vein are due to G. Halász [3] and to J. M. Anderson and K. G. Binmore [1]. Halász has obtained estimates for \(a_n, \sum a_n, \) and \(\sum |a_n| \) when \(\lambda_n+1/\lambda_n \geq q > 1 \) and \(f \) satisfies appropriate conditions. The paper of Anderson and Binmore is concerned with the application of coefficient estimates to the study of entire functions. Their work includes the estimate

\[|a_n| \leq (2\lambda_n)^{1/2} p_n \|f\|_2 \] where \(p_n \) is as above, \(\sum \lambda_n^{-1} < \infty, \) and \(f \in L^2(0, \infty) \).

L. Schwartz [8] had earlier obtained results which essentially include both the estimates of Gaier and of Anderson and Binmore. Indeed, as the referee has pointed out, S. Mandelbrojt [5] had also established inequalities of the same kind and these appear in larger form in [6]. Later, Mandelbrojt’s results were extended by F. Sunyer Belaguer [9], [10].

There is some question left to the sharpness of Schwartz’s estimates and in §2 it is proved that if \(1 \leq p \leq 2 \) and \(f \in L^p(0, \infty) \) then

\[|a_n| \leq (2\lambda_n)^{1/p} p_n \|f\|_p. \]

I do not know if the constant is sharp when \(p < 2 \), or if the order of the estimate still holds when \(p > 2 \) but in §2 there are estimates when \(p > 2 \) for functions which are subject to more stringent conditions. Also in §2 there are estimates for the sequence of partial sums.

Received by the editors February 18, 1969.

(1) Research sponsored by NSF Grant GP-7840.

Copyright © 1970, American Mathematical Society
These results are applied in §3 to obtain some gap theorems. W. Rudin [7] showed that if $\lim \inf \lambda_{n+1}/\lambda_n = 1$ then there is a Dirichlet series so that $f' \in L^1(0, \infty)$ yet $\sum a_n$ diverges. In §3 it is shown that there are sequences $\{\lambda_n\}$ so that $\lim \lambda_{n+1}/\lambda_n = 1$, but so that if $f' \in L^p(0, \infty)$ when $p > 1$, or if $f'' \in L^1(0, \infty)$, then $\sum |a_n| < \infty$.

2. Coefficient estimates.

Theorem 2.1. If $f(x) = \sum_{n=1}^{\infty} a_n \exp (-\lambda_n x)$ converges for each $x > 0$, $\sum \lambda_n^{-1} < \infty$, and $f \in L^p(0, \infty)$, $1 \leq p \leq 2$, then $|a_n| \leq (2\lambda_n)^{1/p} p_n ||f||_p$ where

$$p_n = \prod_{k \neq n} \frac{\lambda_k + \lambda_n}{\lambda_k - \lambda_n}.$$

Proof. Let

$$f_N(x) = \sum_{k=1}^{N} a_k \exp (-\lambda_k x)$$

and

$$F(z) = \sum_{k=1}^{N} \frac{a_k \exp (-\lambda_k z)}{\lambda_k - z}.$$

Then if $\operatorname{Re} z < 0$

$$F(z) = \int_{0}^{\infty} e^{t} f_N(t + e) \, dt.$$

Let

$$B(z) = \prod_{k=1}^{N} \frac{\lambda_k - z}{\lambda_k + z}$$

so that

$$G(z) = F(z)B(z) = \sum_{k=1}^{N} \frac{a_k \exp (-\lambda_k z)}{z + \lambda_k} B_k(z)$$

where

$$B_k(z) = \left(\prod_{j \neq k} \frac{\lambda_j - z}{\lambda_j + z} \right).$$

Now $B_k(z)/(z + \lambda_k) \in H^2$, a Hardy class of functions in the right half-plane, and so the same is true of G. Consequently, G may be represented by the Poisson integral of its values on the imaginary axis, and

$$\|G(x + iy)\|_q \leq \|G(iy)\|_q$$

if $x > 0$ and $q \geq 1$ [4, p. 124, and p. 128].

Next, let Γ be the boundary of a rectangle in the right half-plane with sides parallel to the real and imaginary axes, and enclosing λ_n.

Let $\zeta^{2/p} = \exp (2/p \log \zeta)$ for $|\arg \zeta| < \pi/2$, with $\log 1 = 0$. Then by the residue theorem

$$\frac{a_n \exp (-\lambda_n e) B_n(\lambda_n)}{(2\lambda_n)^{2/p}} = -\frac{1}{2\pi i} \int_{\Gamma} \frac{F(z)B_n(z)}{(z + \lambda_n)^{2/p}} \, dz.$$
But since $G(z)$ goes to zero uniformly in any fixed half-plane $\text{Re } z = \delta > 0$ [4, p. 125] it follows that

$$a_n \exp\left(-\lambda_n e\right)B_n(\lambda_n) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(x'_n + iy)B_n(x'_n + iy)}{(x'_n + iy + \lambda_n)^{2/p}} \, dy$$

$$- \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(x''_n + iy)B_n(x''_n + iy)}{(x''_n + iy + \lambda_n)^{2/p}} \, dy$$

$$= I_1 + I_2$$

where $x'_n < \lambda_n < x''_n$.

Then

$$|I_1| \leq \frac{1}{2\pi} \|G(x''_n + iy)\|_q \left[\int_{-\infty}^{\infty} \left|\frac{x'_n + iy + \lambda_n}{x'_n + iy - \lambda_n}\right|^p \, dy \right]^{1/p}$$

where $1/p + 1/q = 1$. A similar estimate holds for I_2. Since $\|G(x''_n + iy)\|_q \leq \|G(y)\|_q$ we may let $x''_n \to \infty$ and $x'_n \to 0$ to conclude that

$$\left|\frac{B_n(\lambda_n)a_n \exp\left(-\lambda_n e\right)}{(2\lambda_n)^{2/p}}\right| \leq \frac{1}{2\pi} \|G(y)\|_q \left(\int_{-\infty}^{\infty} \frac{dy}{y^2 + \lambda_n^2}\right)^{1/p}$$

$$= \frac{1}{2\pi} \left(\frac{\pi}{\lambda_n}\right)^{1/p} \|G(y)\|_q.$$

Moreover, since $|B(y)| = 1$, then $\|G(y)\|_q = \|F(y)\|_q$, but $F(y)$ is the Fourier transform of $f_N(t + \epsilon)$, so that by the Hausdorff-Young inequality [11, p. 96], $\|G(y)\|_q \leq (2\pi)^{1/q} ||f_N(t + \epsilon)||_p$.

Combining these inequalities gives

$$|a_n \exp\left(-\lambda_n e\right)| \leq \frac{(2\lambda_n)^{1/p}}{|B_n(\lambda_n)|} ||f_N(t + \epsilon)||_p.$$
Theorem 2.2. If
(a) \(f(z) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n z) \) converges when \(\Re z > 0 \);
(b) \(\|f(re^{\theta})\|_p \leq M \) whenever \(|\theta| \leq \eta = \delta \pi/2 < \pi/2 \);
(c) \(\sum \lambda_n^{-1/\beta} < \infty \), where \(\beta + \delta = \gamma > 1 \), and \(\beta < 2 \); then

\[
\left| a_n \right| \leq \frac{2M\beta\lambda_n^{1/p}}{|q \cos(\gamma \pi/2)|^{1/q}} \prod_{k \neq n} \left| \frac{\lambda_k^{1/\beta} + \lambda_n^{1/\beta}}{\lambda_k^{1/\beta} - \lambda_n^{1/\beta}} \right|
\]

where \(1/p + 1/q = 1 \).

Proof. Let

\[
\phi_N(z) = \sum_{k=1}^{N} a_k \exp(-\lambda_k z)
\]

and

\[
F(z) = \sum_{k=1}^{N} \frac{a_k \exp(-\lambda_k \varepsilon)}{\lambda_k - z}, \quad \varepsilon > 0.
\]

Then if \(\Re ze^{i\alpha} < 0 \), and \(|\alpha| < \pi/2 \)

\[
F(z) = \int_{0}^{\infty} \exp(zte^{i\alpha})\phi_N(te^{i\alpha} + \varepsilon)e^{i\alpha} \, dt.
\]

But if \(z = re^{i\theta} \) and \(\Re ze^{i\alpha} < 0 \), then

\[
|F(z)| \leq \left[\int_{0}^{\infty} \exp(rtq \cos(\theta + \alpha)) \, dt \right]^{1/q} \left\| \phi_N(te^{i\alpha} + \varepsilon) \right\|_p,
\]

\[
= \left\| \phi_N(te^{i\alpha} + \varepsilon) \right\|_p \frac{1}{|qr \cos(\theta + \alpha)|^{1/q}}
\]

Now let \((\zeta)^{1/\beta} \) be defined for \(|\arg \zeta| < \pi \), \(1^{1/\beta} = 1 \), and set

\[
B(z) = \prod_{k=1}^{N} \frac{1 - (z/\lambda_k)^{1/\beta}}{1 + (z/\lambda_k)^{1/\beta}}.
\]

Similarly define \((\zeta)^{1/q} \), so that letting

\[
\alpha = \pm \eta, \quad \phi_N(te^{i\alpha} + \varepsilon) \left| z^{1/q} F(z) B(z) \right| \leq \left\| \phi_N(te^{i\alpha} + \varepsilon) \right\|_p = A.
\]

Now \(z^{1/q} F(z) B(z) \) is of relatively slow growth for \(|\arg z| < \beta \pi/2 \), so that by the Phragmen-Lindelöf theorems [12, p. 180]

\[
|z^{1/q} F(z) B(z)| \leq A, \quad |\arg z| \leq \beta \pi/2.
\]

In particular, if \(z = \lambda_n \), then

\[
\frac{\lambda_n^{1/q} |a_n| \exp(-\lambda_n \varepsilon)}{2\beta \lambda_n} \prod_{k \neq n} \left| \frac{\lambda_k^{1/\beta} + \lambda_n^{1/\beta}}{\lambda_k^{1/\beta} - \lambda_n^{1/\beta}} \right| \leq A.
\]

As in the proof of Theorem 2.1, let \(N \to \infty \) and then \(\varepsilon \to 0 \) to obtain the desired inequality.
The next theorem deals with sequences of partial sums.

Theorem 2.3. If \(f(x) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n x) \) converges for each \(x > 0 \), \(\sum \lambda_n^{-1} < \infty \) and \(f' \in L^p(0, \infty) \), \(1 < p \leq 2 \), then

\[
\left| \sum_{k=r}^{s} a_k \right| \leq A_p \| f' \|_p [C_{r-1} + C_s]
\]

where \(A_p \) is a constant depending on \(p \) alone, and

\[
C_n = \min_{\lambda_n < x < \lambda_{n+1}} \frac{1}{x^{1-1/p}} \prod_{k=1}^{n} \left| \frac{x + \lambda_k}{x - \lambda_k} \right|.
\]

Proof. The proof is very much the same as that of Theorem 2.1 and hence many of the details are omitted.

Let

\[
\phi_N(x) = \sum_{k=1}^{N} \lambda_k a_k \exp(-\lambda_k x),
\]

\[
F(z) = \sum_{k=1}^{N} \frac{\lambda_k a_k \exp(-\lambda_k(z + \epsilon))}{\lambda_k - z}, \quad \epsilon > 0,
\]

and

\[
B(z) = \prod_{k=1}^{N} \frac{\lambda_k - z}{\lambda_k + z}.
\]

If \(\Gamma \) is a rectangle in the right half-plane enclosing \(\lambda_r, \ldots, \lambda_s \) and no others then

\[
\sum_{k=r}^{s} a_k \exp(-\lambda_k \epsilon) = -\frac{1}{2\pi i} \int_{\Gamma} \frac{F(z)}{z} \, dz
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(x_r + iy)}{x_r + iy} \, dy - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(x_s + iy)}{x_s + iy} \, dy
\]

\[
= I_1 + I_2,
\]

where \(\lambda_{r-1} < x_r < \lambda_r \leq \lambda_s < x_s < \lambda_{s+1} \).

If \(G(z) = F(z)B(z) \) then

\[
|I_1| \leq \frac{1}{2\pi} \| G(x_r + iy) \|_q D_r \left(\int_{-\infty}^{\infty} \frac{dy}{|x_r + iy|^p} \right)^{1/p}
\]

where \(1/p + 1/q = 1 \) and

\[
D_r = \max_{y} \frac{1}{|B(x_r + iy)|}
\]

A similar estimate holds for \(I_2 \) and since

\[
\| G(x_r + iy) \|_q \leq \| G(iy) \|_q = \| F(iy) \|_q \leq (2\pi)^{1/q} \| \phi_N(t + \epsilon) \|_p
\]

it follows that

\[
\left| \sum_{k=r}^{s} a_k \exp(-\lambda_k \epsilon) \right| \leq A_p \| \phi_N(t + \epsilon) \|_p \left(\frac{D_r}{x_r^q} + \frac{D_s}{x_s^q} \right).
\]

Letting \(N \to \infty \) and then \(\epsilon \to 0 \) completes the proof.
Theorem 2.4. If \(f(x) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n x) \) converges for each \(x > 0 \), \(\sum \lambda_n x < \infty \), and \(f^* \in L^1(0, \infty) \) then

\[
\left| \sum_{k=r}^{s} a_k \right| \leq \frac{\| f^* \|}{2} \left[\min_{\lambda_n < \lambda < \lambda_{n+1}} \frac{1}{x} - \frac{x \lambda_k}{x - \lambda_k} + \min_{\lambda_{n+1} < \lambda < \lambda_{n+2}} \frac{1}{x} - \frac{x \lambda_k}{x - \lambda_k} \right].
\]

Proof. The proof is very similar to the proof of Theorem 2.3 and so will be omitted.

3. Some applications. Before applying the estimates of §2 it is necessary to establish a result about the special sequence \(\lambda_n = \exp(n^\alpha) \).

Theorem 3.1. If \(\lambda_n = \exp(n^\alpha) \) and \(1 > \alpha > 0 \) then

\[
P_n = \prod_{k=n}^{\infty} \left| \frac{\lambda_k + \lambda_n}{\lambda_k - \lambda_n} \right| \leq \exp(C n^{2(1-\alpha)})
\]

where \(C \) is a constant, dependent only on \(\alpha \).

Proof. Since \(\lambda_k/\lambda_{k-1} = \lambda_{k+1}/\lambda_k \), it follows that

\[
\sum_{k=n+1}^{\infty} \frac{1}{\lambda_k} = \sum_{k=1}^{\infty} \frac{1}{\lambda_k} - \sum_{k=1}^{n+1} \frac{1}{\lambda_k} \leq \sum_{j=1}^{\infty} \left(\frac{\lambda_{n+1}}{\lambda_{n+1}} \right)^j + \int_{n+1}^{\infty} \exp(-jx^\alpha) \, dx
\]

so that

\[
\sum_{j=1}^{\infty} \frac{1}{\lambda_{n+1}^j} \sum_{k=n+1}^{\infty} \frac{1}{\lambda_k^j} \leq \sum_{j=1}^{\infty} \left(\frac{\lambda_{n+1}}{\lambda_{n+1}} \right)^j + \int_{n+1}^{\infty} \frac{\lambda_n x^\alpha e^{-u}}{1 - \lambda_n x^\alpha e^{-u}} \, du
\]

But

\[
\int_{(n+1)^{1/\alpha}}^{\infty} u \lambda_{n+1}^{1-\alpha} e^{-u} \, du = (n+1)^{1-\alpha} \lambda_{n+1}^{-1} + \frac{1-\alpha}{\alpha} \int_{(n+1)^{1/\alpha}}^{\infty} \frac{e^{-u} u^{1/\alpha-1}}{u} \, du
\]

so that

\[
\sum_{j=1}^{\infty} \frac{1}{\lambda_{n+1}^j} \sum_{k=n+1}^{\infty} \frac{1}{\lambda_k^j} \leq \sum_{j=1}^{\infty} \left(\frac{\lambda_{n+1}}{\lambda_{n+1}} \right)^j + \int_{n+1}^{\infty} \frac{\lambda_n e^{-u}}{1 - \lambda_n e^{-u}} \, du
\]

But

\[
\int_{(n+1)^{1/\alpha}}^{\infty} u^{1/\alpha-1} e^{-u} \, du = (n+1)^{1-\alpha} \lambda_{n+1}^{-1} + \frac{1-\alpha}{\alpha} \int_{(n+1)^{1/\alpha}}^{\infty} \frac{e^{-u} u^{1/\alpha-1}}{u} \, du
\]
so for large values of n

$$\sum_{k=n+1}^{\infty} \frac{1}{\lambda_k} \leq \frac{1}{1 - \lambda_n/\lambda_{n+1}} + \frac{1}{\alpha} \frac{(n+1)^{1-\alpha}}{1 - \lambda_n/\lambda_{n+1}} \left(1 - \frac{1 - \alpha}{\alpha(n+1)^{\alpha-1}}\right)^{-1}$$

$$\sim \frac{1}{an^{\alpha-1}} + \frac{1}{c^2} \frac{1}{(n+1)^{2(\alpha-1)}} \leq \frac{2}{\alpha^2} \frac{1}{(n+1)^{2(\alpha-1)}}.$$

So

$$p_n = \prod_{k=1}^{n-1} \frac{\lambda_k + \lambda_2}{\lambda_k - \lambda_1} \prod_{k=n+1}^{\infty} \frac{\lambda_k + \lambda_n}{\lambda_k - \lambda_n}$$

$$\leq \exp \left(2 \sum_{k=1}^{n-1} \frac{\lambda_k}{\lambda_n - \lambda_k}\right) \exp \left(2 \sum_{k=n+1}^{\infty} \frac{\lambda_n}{\lambda_k - \lambda_n}\right)$$

$$\leq \exp Cn^{2(1-\alpha)}$$

where C is some constant.

With this estimate the following theorems may be proved.

Theorem 3.2. If $p > 1$ then there is a sequence $\{\lambda_n\}$ such that if

$$f(x) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n x)$$

converges for each $x > 0$ and $f' \in L^p(0, \infty)$ then $\sum |a_n|^e < \infty$ for each $e > 0$.

Proof. Assume without loss of generality that $1 < p \leq 2$, for if $p > 2$ and $f' \in L^p(0, \infty)$ then $f' \in L^r(0, \infty)$ for each $r < p$. This is true since the integrability of f' depends only on its integrability over $(0, 1)$.

Now by Theorem 2.1 and Theorem 3.1, if $\lambda_n = \exp(n^a)$ and $2/3 < a < 1$ then

$$|a_n|^e = O(\exp(eCn^{2(1-a)} - eq^{-1}n^a)),$$

and this estimate shows that $\sum |a_n|^e$ converges.

Theorem 3.3. There exists a sequence $\{\lambda_n\}$ such that if $f(x) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n x)$ converges for each $x > 0$ and $f'' \in L^1(0, \infty)$ then $\sum |a_n|^e$ converges.

Proof. This follows from Theorem 2.4. The proof is similar to that of Theorem 3.2.

References

Michigan State University,
East Lansing, Michigan 48823

Westfield College, University of London,
London, England