$G_{2n}$ spaces
HTML articles powered by AMS MathViewer
- by Donald O. Koehler
- Trans. Amer. Math. Soc. 150 (1970), 507-518
- DOI: https://doi.org/10.1090/S0002-9947-1970-0262806-7
- PDF | Request permission
Abstract:
A complex normed linear space $X$ will be called a ${G_{2n}}$ space if and only if there is a mapping $\left \langle { \cdot , \ldots , \cdot } \right \rangle$ from ${X^{2n}}$ into the complex numbers such that: ${x_k} \to \left \langle {{x_1}, \ldots ,{x_{2n}}} \right \rangle$ is linear for $k = 1, \ldots ,n;\left \langle {{x_1}, \ldots ,{x_{2n}}} \right \rangle = {\left \langle {{x_{2n}}, \ldots ,{x_1}} \right \rangle ^ - }$; and ${\left \langle {x, \ldots ,x} \right \rangle ^{1/2n}} = ||x||$. The basic models are the ${L^{2n}}$ spaces, but one also has that every inner product space is a ${G_{2n}}$ space for every integer $n$. Hence ${G_{2n}}$ spaces of a given cardinality need not be isometrically isomorphic. It is shown that a complex normed linear space is a ${G_{2n}}$ space if and only if the norm satisfies a generalized parallelogram law. From the proof of this characterization it follows that a linear map $U$ from $X$ to $X$ is an isometry if and only if $\left \langle {U({x_1}), \ldots ,U({x_{2n}})} \right \rangle = \left \langle {{x_1}, \ldots ,{x_{2n}}} \right \rangle$ for all ${x_1}, \ldots ,{x_{2n}}$. This then provides a way to construct all of the isometries of a finite dimensional ${G_{2n}}$ space. Of particular interest are the $\operatorname {CBS} {G_{2n}}$ spaces in which $|\left \langle {{x_1}, \ldots ,{x_{2n}}} \right \rangle | \leqq ||{x_1}|| \cdots ||{x_{2n}}||$. These spaces have many properties similar to inner product spaces. An operator $A$ on a complete $\operatorname {CBS} {G_{2n}}$ space is said to be symmetric if and only if $\left \langle {{x_1}, \ldots ,A({x_i}), \ldots ,{x_{2n}}} \right \rangle = \left \langle {{x_1}, \ldots ,A({x_j}), \ldots ,{x_{2n}}} \right \rangle$ for all $i$ and $j$. It is easy to show that these operators are scalar and that on ${L^{2n}},n > 1$, they characterize multiplication by a real ${L^\infty }$ function. The interest in nontrivial symmetric operators is that they exist if and only if the space can be decomposed into the direct sum of nontrivial ${G_{2n}}$ spaces.References
- H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. MR 0124813, DOI 10.1017/CBO9780511566172
- Uri Fixman, Problems in spectral operators, Pacific J. Math. 9 (1959), 1029โ1051. MR 108727, DOI 10.2140/pjm.1959.9.1029
- S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51โ65. MR 96976, DOI 10.2140/pjm.1958.8.51
- J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436โ446. MR 217574, DOI 10.1090/S0002-9947-1967-0217574-1
- P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no.ย 3, 719โ723. MR 1503247, DOI 10.2307/1968653
- D. O. Koehler, A note on some operator theory in certain semi-inner-product spaces, Proc. Amer. Math. Soc. 30 (1971), 363โ366. MR 281024, DOI 10.1090/S0002-9939-1971-0281024-6
- D. Koehler and Peter Rosenthal, On isometries of normed linear spaces, Studia Math. 36 (1970), 213โ216. MR 275209, DOI 10.4064/sm-36-3-213-216
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29โ43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2 H. Minkowski, โTheorie der Konvexen Kรถrper, insbesondere Begrรผndung ihres Oberflรคchenbegriffs,โ in Ges Abhandl. Vol. 2, Leipzig-Berlin, 1911, pp. 131-229.
- T. V. Panchapagesan, Unitary operators in Banach spaces, Pacific J. Math. 22 (1967), 465โ475. MR 213908, DOI 10.2140/pjm.1967.22.465
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no.ย 2, 249โ253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3
- J. G. Stampfli, Adjoint abelian operators on Banach space, Canadian J. Math. 21 (1969), 505โ512. MR 239450, DOI 10.4153/CJM-1969-058-4
- Albert Wilansky, Functional analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0170186
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 507-518
- MSC: Primary 46.15; Secondary 47.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0262806-7
- MathSciNet review: 0262806