Spectral mapping theorems and perturbation theorems for Browder’s essential spectrum
HTML articles powered by AMS MathViewer
- by Roger D. Nussbaum
- Trans. Amer. Math. Soc. 150 (1970), 445-455
- DOI: https://doi.org/10.1090/S0002-9947-1970-0265967-9
- PDF | Request permission
Abstract:
If $T$ is a closed, densely defined linear operator in a Banach space, F. E. Browder has defined the essential spectrum of $T,\operatorname {ess} (T)$ [1]. We derive below spectral mapping theorems and perturbation theorems for Browder’s essential spectrum. If $T$ is a bounded linear operator and $f$ is a function analytic on a neighborhood of the spectrum of $T$, we prove that $f(\operatorname {ess} (T)) = \operatorname {ess} (f(T))$. If $T$ is a closed, densely defined linear operator with nonempty resolvent set and $f$ is a polynomial, the same theorem holds. For a closed, densely defined linear operator $T$ and a bounded linear operator $B$ which commutes with $T$, we prove that $\operatorname {ess} (T + B) \subseteq \operatorname {ess} (T) + \operatorname {ess} (B) = \{ \mu + v:\mu \in \operatorname {ess} (T),v \in \operatorname {ess} (B)\}$. By making additional assumptions, we obtain an analogous theorem for $B$ unbounded.References
- Felix E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1960/61), 22–130. MR 209909, DOI 10.1007/BF01343363
- I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185–264. MR 0113146, DOI 10.1090/trans2/013/08
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- David Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246–248. MR 221318, DOI 10.1090/S0002-9904-1968-11905-6
- J. T. Marti, Operational calculus for two commuting closed operators, Comment. Math. Helv. 43 (1968), 87–97. MR 223920, DOI 10.1007/BF02564382
- Angus E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49. MR 190759, DOI 10.1007/BF02052483
- T. T. West, Riesz operators in Banach spaces, Proc. London Math. Soc. (3) 16 (1966), 131–140. MR 193522, DOI 10.1112/plms/s3-16.1.131
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 445-455
- MSC: Primary 47.30
- DOI: https://doi.org/10.1090/S0002-9947-1970-0265967-9
- MathSciNet review: 0265967